
People Finding under Visibility

Constraints using Graph-Based Motion

Prediction

AbdElMoniem Bayoumi, Philipp Karkowski, and Maren Bennewitz?

Humanoid Robots Lab, University of Bonn, Germany
{abayoumi,philkark,maren}@cs.uni-bonn.de

Abstract. An autonomous service robot often first has to search for a
user to carry out a desired task. This is a challenging problem, especially
when this person moves around since the robot’s field of view is con-
strained and the environment structure typically poses further visibility
constraints that influence the perception of the user. In this paper, we
propose a novel method that computes the likelihood of the user’s ob-
servability at each possible location in the environment based on Monte
Carlo simulations. As the robot needs time to reach the possible search
locations, we take this time as well as the visibility constraints into ac-
count when computing effective search locations. In this way, the robot
can choose the next search location that has the maximum expected
observability of the user. Our experiments in various simulated environ-
ments demonstrate that our approach leads to a significantly shorter
search time compared to a greedy approach with background informa-
tion. Using our proposed technique the robot can find the user with a
search time reduction of 20% compared to the informed greedy method.

1 Introduction

Finding a person is an essential functionality that is needed by several applica-
tions of mobile service robots. Typically, users do not stay at a fixed position but
move along common paths between places where they remain for a while, e.g.,
to discuss work with a colleague, grab some material, or get a coffee. The robot
needs a good strategy to find the user as fast as possible also in these situations
to carry out its task.

One possible solution to the search problem is to apply techniques that try
to maximally cover the visible area of the environment [1–3]. However, these
approaches often lead to long search times and high navigation costs as they aim

? All authors are with the Humanoid Robots Lab, University of Bonn, Germany. This
work has been supported by the German Academic Exchange Service (DAAD) and
the Egyptian Ministry for Higher Education as well as by the European Commission
under contract number FP7-610532-SQUIRREL and by the DFG Research Unit
FOR 2535 Anticipating Human Behavior.

Fig. 1. Top: The robot needs to find a user whose current location is unknown. The user
may walk toward any of a set of predefined destinations, known by the robot. Bottom:
The robot needs to select a good search location that covers most of the expected paths
of the user. Our approach selects a search location with maximum observability of the
user at the time the robot reaches it.

at covering the whole environment. Moreover, the maximum coverage techniques
will not necessarily revisit already covered regions, which might be necessary
since the user is assumed to move across the environment and the robot might
miss him during the search.

In this paper, we make use of prior knowledge about frequently visited desti-
nations of the user and their connecting paths. We developed an approach that
determines good search locations using a particle filter based prediction model
on a graph representation of paths the user typically takes. Our novel approach
computes the likelihood of the observability of the user at each possible loca-
tion based on Monte Carlo simulations. We hereby take into account the time
needed by the robot to reach the search locations from its current position as
well as the visibility constrains that arise from the robot’s limited field of view
and obstacles. Fig. 1 highlights the strength of our approach. The location of
the user is initially unknown. Our approach leads to the selection of an effective
search location that provides the highest expected observability, i.e., the robot
can observe the corridor and the entrances to multiple rooms and, thus, locate
the user.

We show in extensive simulated experiments and in various environments
that our technique generates search locations that significantly reduce the time
to find the user compared to a greedy solution that is provided with background
information about the possible destinations between which the user moves. In
the experiments, we model noisy observations and dynamic obstacles to show
the robustness of our approach.

2 Related Work

The problem of finding a moving person in an environment was early studied as
a coverage problem based on the robot’s visibility polygon [1–5]. Stiffler et al. [6]
additionally considered the problem of unreliable sensors in this context. The au-
thors developed a visibility-based geometric formulation to place the surveillance
robot at specific environment locations that maximize the path of the intruder
through the robot’s visible region to increases the likelihood of observing the
intruder. All these solutions to the coverage problem do not predict motion of
the person and thus cannot provide any pose estimate. They lead to long search
times and high navigation costs as they aim at covering the whole environment.

On the other hand, several approaches that predict motions and aim at min-
imizing the searching time for a mobile robot have been presented. Tipaldi and
Arras [7] proposed to learn a spatial affordance map and apply a Poisson process
to relate space, time, and occurrence probability of activity events. Afterwards,
the spatio-temporal model can be used to generate an optimal path on a grid
map of the environment for a mobile robot to encounter specific humans. This
approach does not make use of any sensor modalities to update the believe about
the location of a user but considers just the encounter probability of grid cells.
Schwenk et al. [8] developed a search approach that uses a highly abstract topo-
logical representation of the environment and learns about the user’s behaviors
in order to estimate the likelihood of the user’s current room. Here, it is assumed
that the robot detects people when they are within a range of 1.8 m around the
robot. Kulich et al. [9] introduced a model that learns the temporal likelihood
of possible desired interactions to actively search for humans in order to inter-
act with them in public space. Krajńık et al. [10] presented a method based
on spatio-temporal models to enable the robot finding non-stationary objects
in an office environment. The authors represent the environment as an abstract
topological map and combine it with periodic functions in order to compute the
likelihood of existence of the objects at any node of the map with respect to the
time. All these approaches, however, ignore the visibility constraints resulting
from the environment layout.

Other approaches considered the frequency of human existence at specific
locations. The idea here is to construct a probability distribution for every hour
of the day. For example, in the work of Volkhardt and Gross [11], the robot
searches for the human at pre-defined locations, where each location is assigned
a probability relative to the frequency of observing the human there. Accordingly,
the robot selects the location with the highest probability. Mehdi and Berns [12]

presented a technique that generates a minimum set of view points that ensure
a maximum coverage of the environment with the robot’s constrained field of
view. The authors proposed to construct a probability distribution about the
human’s observability at these destinations during each hour of the day and
take the navigation cost into account for deciding which one of the view points
to chose as search location. These methods do not model the human’s motion
and therefore cannot predict their expected position at a certain intermediate
time step.

Goldhoorn et al. [13] proposed using particle filters to estimate the most
likely location of the user at the current time step. The robot moves toward that
location for few time steps then updates its estimate about the user’s position
and recomputes the robot’s movement. As opposed to our method, this tech-
nique does not take into account the time needed by the robot to reach search
locations from its current place. Moreover, moving the robot just for few time
steps and then selecting another search location often lead to oscillating navi-
gation behavior as the estimation jumps across the map as we realized in our
experiments.

In contrast to all the mentioned search methods, our system models the
human’s motion and provides a probability distribution about his/her position
at each time step. We consider the robot’s limited field of view and visibility
constraints when computing the likelihood of observing the user at a certain
place and also take into account the time needed by the robot to reach the
search locations.

3 Problem Formulation

The task of the robot is to find a non-stationary user as fast as possible. The
environment is hereby known to the robot and it has prior knowledge about
locations where the user frequently stays and his/her typical paths between
these locations. We refer to these locations as destinations. After reaching such
a destination, the user might stay there or move to another destination after a
certain waiting time.

We represent the environment as a grid map with an overlaid topo-metric
graph as shown in Fig. 3, where each cell in that grid is mapped onto its closest
graph node [14]. The connections shown between neighboring nodes correspond
to valid paths between these nodes. However, some of the paths are only passable
by humans, e.g., due to the size of the robot or any other potential constraints
of the searching environment.

The location of the user is initially unknown to the robot as well as his/her
intended destinations when moving. After reaching a destination, the user might
stay there or start moving to another destination after some time. We assume
the moving velocity of the user to be within a certain range, however, the exact
velocity of the user is unknown to the robot. Dynamic obstacles, e.g., other
humans, can appear in the environment and temporarily constrain the robot’s

field of view. The task is considered as successful when the robot observes the
user within its field of view.

4 Graph-Based People Tracking

To represent the belief about the location of the user and track its motion on
the graph between the destinations, we apply a particle filter, inspired by the
work of Liao et al. [15].

We use the information about the typical paths between the destinations
and the times the user stays at the destinations to find the average time that
the user occupies each node. We sample the pose of the particles according to
this occupation likelihood. For each particle, we independently sample one of
the destinations as the next “goal” based on the typical paths that lead through
its node.

Each particle then moves to a graph node along the path to its destination
according to a Gaussian motion model, taking into account the velocity range
of the user. Whenever a particle reaches its destination (or is initialized at a
destination), it remains there for a sampled time interval that corresponds to
the typical waiting behavior of the user. Finally, we select another destination
for the particle as its next goal according to the transition probability:

p(Dest i = Db |ni = Da) = p(Db |Da), (1)

where Desti is the chosen destination of particle i, ni is the graph node of par-
ticle i, Da and Db are two destinations, and p(Db|Da) is the known probability
of the user to move from Da to Db.

The particles are weighted proportional to the observation likelihood. The
weights are initially set to the same value and then updated at each time step
as follows. For particles that fall within the robot’s field of view while the user
is not currently detected, the weights are reduced:

wi =

{
γwi, if (ni ∈ FOV) ∧ user not detected

wi otherwise
, (2)

where wi is the weight of particle i, ni is again the current graph node of par-
ticle i, FOV is the area covered by the robot’s visual sensors and γ ∈ [0, 1) is
a reduction factor. Since the likelihood of false negative observations increases
with the distance of the user to the robot, γ decreases with this distance.

As we assume a proper identification system, we do not model false positive
observations. Note, however, that we can deal with false positive observations
for a short time by requiring a minimum number of subsequent time steps where
the human is detected before the search is assumed to be successful.

5 Selecting Search Locations via Monte Carlo Simulations

In this section, we describe our approach to selecting effective search locations for
the robot to find the human. Relying only on the estimated most likely location

of the user at each time step leads to an oscillating navigation behavior as the
estimation might jump across the map. We, therefore, propose a method based
on Monte Carlo simulations that takes into account the time needed by the robot
to reach the possible search locations from its current place.

We first perform Monte Carlo simulations to compute the positions of the
particles at future time steps according to the motion model. In particular, we
simulate the particle propagation along the graph according to the motion model
as many future time steps as needed by the robot to reach the furthest graph
node relative to the robot’s current node. We then compute the likelihood of the
user’s observability at each graph node, while considering the time needed to
reach this node. For example, if a node lies ten time steps away, we consider the
simulated particle distribution ten time steps into the future when computing
likelihood of the user’s observability at this node. The weights of the simulated
particles stay unaffected during the Monte Carlo simulations.

We compute the observability likelihood lj of the user at each node j as
follows

lj =
∑
i∈Ot

j

wi , ∀j ∈ Rt , 1 ≤ t ≤ T , (3)

where Rt is the set of graph nodes that can be reached from the robot’s current
node nr within exactly t future time steps, T is the number of future time
steps needed to reach the furthest graph node from nr, and Ot

j is the group of
simulated particles at future time step t that can be observed from node j.

After computing lj for every j, we select the graph node with the highest
observability likelihood s as the next search location1, i.e.,

s = argmax
j

lj . (4)

The pseudo-code of our search goal selection algorithm is listed in Alg. 1. As can
be inferred from the example shown in Fig. 2, the robot selects the next search
goal as the location that provides highest observability at the time the robot
reaches it.

The robot then navigates to the selected node along the shortest path in
the graph and does an observation action by performing a full rotation. If the
user cannot be found anywhere on the way to the current search location nor
while performing the observation action, a new search location is selected as
previously and so forth. Performing the particle simulations in the described
way and including them in the calculation of the observation likelihood provides
an effective method for selecting a good search location that takes into account
the dynamic behavior of the user.

While computing the next search location, we do not consider waiting actions
or non-shortest paths, as this results in infinite possibilities to reach any node.
Neither do we take into account the observability along the intermediate nodes

1 Note that the time is inherently considered in the computation of the lj , such that s
does not need to have a time index.

Algorithm 1: Selection of the next search location using Monte Carlo
simulations
Input : particles and robotPose
Output: next search location
likelihood← {};
for t← 1 to T do

particles← simulate particles one step ahead acc. to the motion model;
reachableNodes← nodes that can be reached by the robot in exactly t time
steps;

nodesWeights← {};
// calculate collective weight for each node at time step t;
for i← 1 to particles.size do

node← particles[i].node;
weight← particles[i].weight;
nodesWeights[node]←
nodesWeights[node] + weight;

end
// calculate observability likelihood for each node;
for r ∈ reachableNodes do

visibleNodes← visible nodes from r (incl. r) at time step t;
for v ∈ visibleNodes do

likelihood[r]←
likelihood[r] + nodesWeights[v];

end

end

end
return argmax

node
likelihood[node];

to the considered search location. As we have found out in our experiments, this
leads to a selection of search locations with longer paths and does not decrease
the search time.

6 Experimental Results

We carried out extensive experiments to evaluate our approach and compare it
to alternative methods.

6.1 Experimental Setup

We performed the experiments in three different, challenging simulation environ-
ments (see Fig. 3), each of size 41 m× 20.5 m with a grid map resolution of 0.25 m
and a node distance of 1.5 m. In the first two environments, multiple paths exist
between the destinations, among which the user chooses one based on a certain
known probability distribution and the transition probabilities from one desti-
nation to the others are equally likely (see Eq. 1). Note, however, that some

Fig. 2. This figure shows the selected search location according to Alg 1. The graph
nodes are drawn with a color intensity corresponding to the observability likelihood of
the user at the time the robot reaches this search location. The robot selects the node
that provides the highest observability likelihood as next search location.

passages are impassible to the robot, i.e., the dotted line with orange nodes for
the first two environments to make the search problem even more challenging.

In each experiment, the position of the user is initialized according to the
occupation likelihood (see Sec. 4) and the user moves in the environment between
the predefined destinations. The user does not necessarily move on the shortest
path but might take detours. When the user reaches his/her destination, he/she
waits there for a certain period of time. The user repeats this behavior until
he/she reaches his/her fourth destination and remains there. The velocity of the
user is sampled from a certain interval. At each time step, the position of the
user is mapped onto the closest graph node given its grid map position. The
initial location of the user is unknown to the robot and is outside its field of
view.

We use 150 particles to represent the belief about the position of the user
and track it on the graph representation of the environment. The particles are
initialized and updated as described in Sec. 4.

The number of dynamic obstacles that constrain the robot’s field of view
ranges from three to five and their velocities are sampled from the same interval
as the velocity of the user.

The search task is considered successful when the robot observes the user. The
robot’s field of view has a horizontal opening angle of 58◦, which corresponds to
that of an ASUS Xtion Pro Live, and a 10 m view distance. We set the probability
of false negatives between 0.05 and 0.15 linearly increasing with the distance
between the robot and the user. We do not consider false positive observations
in the simulation experiments.

6.2 Evaluation and Results

We performed 5, 000 experiments in each of the three environments. In order to
evaluate the performance of our approach, we considered the search time and

Fig. 3. Three simulation environments with overlaid topo-metric graphs. Each envi-
ronment is represented as a grid map with an overlaid graph, where each grid cell is
mapped to the closest graph node (green dots) in the same room. The orange dots
represent paths that are only passable by the user but not by the robot. The bold
green dots represent the predefined destinations between which the user moves.

compared it to the time needed by two different approaches. The strategy of the
first alternative approach is to visit all destinations in a greedy fashion using
background information, i.e., the knowledge about the destinations of the user.
The greedy approach does not consider any prediction about the user’s location;
it keeps selecting the closest unvisited destination as a search location until the

Fig. 4. Average relative search time achieved by our approach with respect to the
greedy approach with background information. The times are normalized so that the
greedy approach equals 100%.

Fig. 5. Average relative search time achieved by our approach with respect to the one-
step to estimation method. The times are normalized so that the one-step to estimation
approach equals 100%.

Table 1. Percentage of switching to the greedy approach.

Our Approach
One-Step to
Estimation

Env. 1 2% 7.38%
Env. 2 1.14% 5%
Env. 3 7.45% 15.05%

user is found. After visiting all destinations it starts the search process all over
again.

We additionally compared our approach to a method that uses the particle
filter representation to infer the currently most likely location of the user and
moves the robot toward that location for one time step, then updates the estima-
tion and so on. This method is similar to the approach of Goldhoorn et al. [13]
and we refer to this method as the one-step to estimation method.

We evaluated the statistical significance of our comparative experiments with
a two-tailed paired t-test. The experimental results show that our method per-
forming Monte Carlo simulations significantly outperforms each of the other two
approaches with a statistical significance of 99%. Fig. 4 and Fig. 5 show the
average relative search times achieved by our approach for each of the three
environments with respect to the greedy approach with background information
and the one-step to estimation method, respectively.

As our approach does not guarantee to cover the entire map and, thus, might
not find a search location close to the user’s final destination, we switch to
the greedy approach after a given time limit. The maximum time limit was
determined experimentally such as to minimize the overall search time. Table 1
shows the percentage of experimental runs using our approach and the one-step
to estimation” approach that exceeded this time limit and switched to the greedy
method. As shown, our technique based on Monte Carlo simulations outperforms
the one-step to estimation method for all the environments.

A video showing the advantages of our approach for an example run can be
downloaded from https://www.hrl.uni-bonn.de/ias18bayoumi.mp4.

7 Conclusion

In this paper, we presented an approach that enables a mobile robot to quickly
find a non-stationary user in complex environments. Our method selects the next
search location by predicting future paths of the user. To compute the likelihood
of the observability of the user at possible search locations, we apply Monte Carlo
simulations using a particle filter on a graph representation of possible paths in
the environment. We hereby take into account the time needed by the robot to
reach the search locations as well as visibility constraints.

As our simulation experiments demonstrate, our approach enables the robot
to select effective search locations to find the user within a short amount of time.
We showed in extensive experiments that our proposed method significantly
outperforms two other common search methods. The experiments included runs
where occlusions caused by dynamic obstacles as well as false negative detection
occurred, which will be the case for real-world scenarios.

References

1. Suzuki, I., Yamashita, M.: Searching for a mobile intruder in a polygonal region.
SIAM Journal on Computing 21(5) (1992) 863–888

2. Guibas, L., Latombe, J., LaValle, S., Lin, D., Motwani, R.: A visibility-based
pursuit-evasion problem. International Journal of Computational Geometry and
Applications (1996) 471–494

3. Choset, H.: Coverage for robotics – a survey of recent results. Annals of Mathe-
matics and Artificial Intelligence 31(1) (2001) 113–126

4. Moors, M., Rohling, T., Schulz, D.: A probabilistic approach to coordinated multi-
robot indoor surveillance. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS). (2005) 3447–3452

5. Kolling, A., Carpin, S.: Multi-robot surveillance: An improved algorithm for the
graph-clear problem. In: Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA). (2008) 2360–2365

6. Stiffler, N., Kolling, A., O’Kane, J.: Persistent pursuit-evasion: the case of pre-
occupied pursuer. In: Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA). (2017) 5027–5034

7. Tipaldi, G., Arras, K.: I want my coffee hot! Learning to find people under spatio-
temporal constraints. In: Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA). (2011) 1217–1222

8. Schwenk, M., Vaquero, T., Nejat, G., Arras, K.: Schedule-based robotic search for
multiple residents in a retirement home environment. In: Proc. of the National
Conf. on Artificial Intelligence (AAAI). (2014) 2571–2577

9. Kulich, M., Krajńık, T., Přeučil, L., Duckett, T.: To explore or to exploit? Learn-
ing humans’ behaviour to maximize interactions with them. In Hodicky, J., ed.:
Modelling and Simulation for Autonomous Systems: Third International Work-
shop, MESAS 2016, Revised Selected Papers. Springer International Publishing
(2016) 48–63

10. Krajńık, T., Kulich, M., Mudrová, L., Ambrus, R., Duckett, T.: Where’s Waldo
at time t? Using spatio-temporal models for mobile robot search. In: Proc. of the
IEEE Int. Conf. on Robotics & Automation (ICRA). (2015) 2140–2146

11. Volkhardt, M., Gross, H.: Finding people in home environments with a mobile
robot. In: Proc. of the European Conf. on Mobile Robots (ECMR). (2013) 282–
287

12. Mehdi, S., Berns, K.: Behavior-based search of human by an autonomous indoor
mobile robot in simulation. Universal Access in the Information Society 13(1)
(2014) 45–58

13. Goldhoorn, A., Garrell, A., Alquézar, R., Sanfeliu, A.: Searching and tracking
people in urban environments with static and dynamic obstacles. Robotics and
Autonomous Systems 98 (2017) 147–157

14. Bayoumi, A., Karkowski, P., Bennewitz, M.: Learning foresighted people following
under occlusions. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS). (2017)

15. Liao, L., Fox, D., Hightower, J., Kautz, H., Schulz, D.: Voronoi tracking: Loca-
tion estimation using sparse and noisy sensor data. In: Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS). Volume 1. (2003) 723–728
vol.1

