
A Combined RGB and Depth Descriptor for SLAM with Humanoids

Rasha Sheikh Stefan Oßwald Maren Bennewitz

Abstract— In this paper, we present a visual simultaneous
localization and mapping (SLAM) system for humanoid robots.
We introduce a new binary descriptor called DLab that exploits
the combined information of color, depth, and intensity to
achieve robustness with respect to uniqueness, reproducibility,
and stability. We use DLab within ORB-SLAM, where we
replaced the place recognition module with a modification of
FAB-MAP that works with newly built codebooks using our
binary descriptor. In experiments carried out in simulation and
with a real Nao humanoid equipped with an RGB-D camera, we
show that DLab has a superior performance in comparison to
other descriptors. The application to feature tracking and place
recognition reveal that the new descriptor is able to reliably
track features even in sequences with seriously blurred images
and that it has a higher percentage of correctly identified similar
images. As a result, our new visual SLAM system has a lower
absolute trajectory error in comparison to ORB-SLAM and is
able to accurately track the robot’s trajectory.

I. INTRODUCTION

In the past years, several feature descriptors have been
developed. Some of them use textural information such
as SIFT, SURF, and more recently ORB [1]. Others are
geometric descriptors built from point clouds. A comparison
of different 3D descriptors is provided in the work of
Hänsch et al. [2]. Combining information from different
sources such as RGB and depth values increases the robust-
ness of feature descriptors as different cues complement each
other, e.g., CSHOT [3], BRAND [4], BAG [5], and SBP [6]
use texture and depth information in their descriptors. While
BRAND has been shown to have superior performance, it
suffers from ambiguity in how texture and shape information
are combined.

In this paper, we present a robust visual SLAM system
for humanoid robots such as the Nao robot (see Fig. 1)
that uses the combined color and depth data acquired
with an RGB-D camera. We apply an extension of the
ORB-SLAM system [7], which is a state-of-the-art system,
with the following modifications. (1) We developed a new
binary descriptor, DLab, that uses color, intensity, and depth
information and use it in place of ORB. To improve the
tracking behavior of ORB-SLAM, we (2) use brute force
matching between consecutive images and filter out outliers
with RANSAC and (3) keep a sequence of previous images
together with their estimated camera poses to determine the
transformation of the current camera frame. (4) We replaced
the place recognizer DBoW2 [8] with a modification of FAB-
MAP [9] so that it works with our new binary descriptor,
which results in a faster performance in comparison to using

All authors are with the Humanoid Robots Lab, University of Bonn,
Germany.

Fig. 1. Walking Nao with an RGB-D camera mounted on its head. Our
new descriptor, DLab, combines depth and color information and is used
for SLAM.

SURF as in the original implementation and yields a higher
number of correct loop closures compared to using DBoW2.

Our experiments demonstrate that DLab has comparable
or better precision at the highest recall under translation
and orientation image transformations. In the experimental
evaluation, we show that our SLAM system is able to
reliably track features even in sequences containing blurry
images, which frequently occur when acquiring images with
a walking humanoid. Additionally, our new place recognition
module has a higher percentage of correctly identified matches.
Accordingly, the resulting absolute trajectory error is seriously
reduced in comparison to ORB-SLAM.

In summary, our main contributions are the following. First,
we propose a new binary image descriptor that makes use of
color and depth information and employ it in a state-of-the-art
visual SLAM system to improve feature matching. Second,
we modified the place recognition module to work with our
binary descriptor using newly built codebooks. Lastly, we
show in various comparative experiments that we can improve
the tracking behavior during visual SLAM.

II. RELATED WORK
A. RGB-D SLAM

Henry et al. [10] and Endres et al. [11] were among the
first who developed a 3D mapping system for data acquired
with an RGB-D camera. The general idea of these approaches
is to combine the matching of features with pose optimization
to reduce the error in the estimates after loop closures. Mur-
Artal et al. [7], [12] proposed ORB-SLAM, which performs
mapping, tracking, relocalization, and loop closure in real-
time using ORB features [1]. Figueroa et al. [13] combined
visual odometry and KinectFusion [14] to reconstruct indoor
scenes using the BRAND descriptor [4].

In our work, we apply a modified version of ORB-
SLAM, which tracks sparse features and therefore is not as



computationally expensive as methods that run on GPUs [15],
[13], [16]. We replaced the ORB descriptor with DLab and
enhanced the tracking behavior so it can also handle images
with poor features, and can recover from cases where the
current camera transformation cannot be determined.

DLab is based on BRAND [4] but we separate the
appearance and depth information as mixing them causes
ambiguity. Additionally, we change the way depth information
is used. We do not use the point clouds and perform fast
pixel tests on patches to speed-up the construction of the
descriptor.

B. Appearance-Based Loop Closing
Cummins et al. developed FAB-MAP [17], which is an

appearance-based approach for mapping. It uses the bag-of-
words model to decide whether a place is a new location or has
been visited before. Hereby, the system uses the observation
that some features are more likely to appear together rather
than separately.

Gálvez-López and Tardos presented DBoW2 [8], a fast
place recognizer that is also based on the bag-of-words
approach. To speed up the feature extraction step, the authors
initially used the binary feature descriptor BRIEF. Mur-Artal
and Tardós then modified DBoW2 to use ORB features [18],
which are rotation and scale invariant. ORB-SLAM [7] uses
DBoW2 as its place recognition module. In the experiments
with our Nao robot, we experienced that a lot of the images
it identifies as similar are in fact of different places. We
therefore replaced DBoW2 with FAB-MAP [9] and modified
it so that it works with DLab. Since the new descriptor is
binary, it is also faster compared to when using SURF, the
descriptor originally used by FAB-MAP.

Sünderhauf et al. have presented a method that relies on
CNNs for feature extraction, but it is computationally more
expensive and requires processing on GPU [19].

C. SLAM and Visual Odometry for Humanoid Robots
Stasse et al. [20] presented a 3D SLAM system for

humanoid robots. The authors combined data from the
robot’s walking pattern generator with odometry, IMU data,
and visual features from a monocular camera in an EKF
framework. Since images taken by humanoid robots can
suffer from blur due to the swaying motion during walking,
Pretto et al. [21] investigated how to mitigate that effect by
developing an approach that only selects highly distinctive
features.

Oriolo et al. [22] used the head pose provided by the
PTAM algorithm and the torso orientation from the IMU
measurements in the correction step of EKF to localize a
humanoid robot.

In our work, we use the RGB and depth information to
simultaneously localize the robot and map the environment.
We match features of consecutive images and apply bundle
adjustment to optimize the pose of the robot. We use
distinctive frames, i.e., images with their estimated camera
poses, to build a pool of locations for the place recognition
module, which indicates whether a loop closure is likely to
have appeared.

1

w2

w1

P

D L a b

0 255

d1<d2

Fig. 2. Layout of our descriptor. Each field in the binary descriptor is filled
out by comparing one pair of windows in a patch P . The descriptor is 256
bits long and has equal sections for the depth, intensity, and color channels.

III. DLAB FEATURE DESCRIPTOR

Having a good descriptor that is capable of capturing the
information in a keypoint patch is essential for good feature
matching in visual SLAM. The speed of creating a new
descriptor is also of importance since in order for the SLAM
system to perform well, a lot of image features need to be
computed at every time step. We therefore opted to use binary
descriptors which are fast as they carry out simple pixel tests
and matching them can also be performed quickly by using
the Hamming distance for comparison which is basically an
XOR operation.

DLab builds upon BRAND [4], which combines the
appearance and shape information by performing the logical
operation OR on the result of appearance and shape tests.
This produces ambiguity when comparing patches, since the
system for example can erroneously conclude that two regions
are similar although they only agree on the appearance but
not on the depth.

Therefore, we build the 256 bit descriptor out of four
equally sized parts: One for the depth tests and one for
the intensity, respectively, and in addition include color
information. Although intensity is often used to mitigate
the effect of noise and illumination changes, it inevitably
does not carry as much information as the original color
channels. Thus, we combine the advantages of both and use
the last two parts of the descriptor for color information.

Our system first converts the image from the RGB to
the Lab color space providing an intensity and two color
channels and then computes integral images for those three
channels and for the depth channel. The size of the patch
and the scale for each keypoint is then computed as in the
original implementation. After rotating and scaling the patch,
pixel tests are performed to fill the 256 bit binary string.
To minimize the impact of noise, the tests are carried out
on pairs of windows that are 9 pixels wide and we use the
precomputed integral images. The location of the windows are
precomputed using a Gaussian distribution as in BRAND [4].

Fig. 2 shows how the descriptor for a patch of pixels P
centered around a keypoint is constructed. The integral sum
value of the depth values in window w1 denoted as d1 is
compared to that of the second window w2 denoted as d2. If
the test is positive, the associated bit in the binary vector is



Detector Descriptor Filter

TRACKING

MAPRECOGNITION
PLACE

LOOP CLOSING

LO
C

A
L M

A
P
P
IN

G

Loop Correction Loop Detection

RGB-D
Frame

Pre-process Input Pose Prediction
(Motion Model)

or Relocalization

Track
Local Map

New KeyFrame
Decision

KeyFrame

KeyFrame
Insertion

Recent
MapPoints

Culling

New Points
Creation

Local BA

Local
KeyFrames

Culling

Query 
Database

Compute
SE3

Loop
Fusion

Optimize
Essential

Graph

Visual
Vocabulary

Recognition
Database

Covisibility
Graph

Spanning
Tree

KeyFramesMapPoints

Fig. 3. Overview of the ORB-SLAM system. The figure is from [12] with
the changed components marked in green.

set to 1. The same steps are followed to fill out the intensity L
and the colors a and b test parts of the descriptor. The source
code can be found at https://www.hrl.uni-bonn.
de/research/DLab.

IV. VISUAL SLAM

Fig. 3 shows an overview of the ORB-SLAM system with
the components we changed highlighted in green.

A. Pose Tracking

ORB-SLAM tracks the position of the camera frame by
using the motion computed from the poses of the previous
two frames. After the frame is initialized to a new pose, the
map points seen in the previous frame are projected into
the current frame and the search for matches is carried out
by comparing descriptors in a window around the projected
point. These matches are then used for pose optimization
with g2o [23] using a variant of local bundle adjustment
where the points are fixed and the pose is optimized.

When there are rotations in the movement of the robot or
in case of a jittering head with the RGB-D camera during
walking, the motion model frequently fails at providing a
good initial estimate. Accordingly, no good matches can be
found and tracking fails. In these situations, ORB-SLAM is
not able to recover unless there is a loop closure later on.

We therefore do not use the motion model in tracking and
instead rely on brute force matching between images. To
increase the chances of detecting the same features as those
in the previous frame, a large number of keypoints, around
1000, are detected in each image. With so many keypoints,
some might have similar appearance although they correspond
to different points in the 3D environment. By using the depth
information to compare patches surrounding the keypoint,
DLab is able to filter out wrong matches that are only visually
similar.

Brute force matching works by comparing all of the
descriptors of the current image to all of those of the previous
frame (here, the Hamming distance can be used since we
have binary descriptors). To further ensure the quality of the
matches, we use the mutually best match condition, i.e., a

pair of features (q, a) with q from the current image and a
from the previous image is considered a match if a is the best
match for q among features in the previous image, and q is
the best match for a among all features in the current image.
Additionally, we apply the k-nearest neighbor algorithm to
find the two closest descriptors for each query descriptor and
only consider those matches with a certain distance ratio r
between the nearest two:

dqa < r · dqb, (1)

where q is the query descriptor in the current image, a and
b are the closest two descriptors in the previous frame, and
dqa as well as dqb are the corresponding distances.

Similar to Endres et al. [11] we refine the matches using
RANSAC. First the 2D points are mapped back to 3D. Then
we run a number of iterations to compute the transformation
between the two sets of 3D points. The outer loop in our
RANSAC implementation aims at finding the transformation
with the largest number of inliers. In each iteration we
start out by sampling some matches, we then compute the
transformation (as described below) and determine the number
of initial matches that are considered as inliers using the
computed transformation. The transformation is refined in an
inner loop where every step uses the inliers of the previous
step. The refined transformation with the smallest inlier error
is kept.

We use the SVD to find the transformation, and the error is
computed as the L2 norm of the difference between a 3D point
and its corresponding 3D point that has been transformed
using the calculated transformation.

The inlier matches are used to find the pose estimate of the
current frame. This is done by minimizing the reprojection
error:

e = ‖pf − π(q, c)‖ , (2)

where q is the 3D point in the world, c is the new camera
frame, π is the projection function, and pf is the 2D
coordinate of the matched point in the previous frame.
Minimizing this error is carried out by g2o [23]. The new
frame is added as a node with its pose initialized to that of
the keyframe and each matched pair is then added as a unary
edge to this node. g2o optimizes this graph and yields the
new pose estimate.

To prevent erroneous pose estimates, we consider the pose
estimate to be incorrect when the computed translation w.r.t.
the previous frame is larger than a certain threshold. We
always keep the last five frames for which a transformation
can be found ft−1, . . . , ft−5. Whenever for a frame ft no
valid transformation can be found using ft−1, we try to
compute the transformation using the previous frames with
the procedure described above. If still no valid transformation
can be found, we skip the frame. This might happen when an
image is too blurred and does not have descriptive features.

B. Mapping

ORB-SLAM selects a subset of images with their corre-
sponding transformation as so-called keyframes. These are



then used to build a map of the environment. The selection
criteria consider how many points in a local region of the
map are tracked and how many features from the reference
keyframe are tracked.

Accordingly, not all frames are kept as keyframes which
might be a problem for loop closure as it might happen that
a location that has been visited before is not recognized. We
therefore always create a new keyframe from a frame with
a valid transformation and rely on a post-processing step to
remove keyframes that share a high number of points. In this
way, graph optimization on the keyframes is still efficient
and loop closures can still be reliably detected since only
keyframes that are very similar to others are removed.

After creating new keyframes, the mapping part of ORB-
SLAM is also responsible for performing bundle adjustment
and culling redundant keyframes. These steps are carried out
in a separate thread from tracking and only when there are
no other keyframes waiting to be processed in the buffer.
In our experiments, this led to discrepancies in the map
where some regions with a high number of keyframes are not
processed whereas other parts that have just a few keyframes
are sent to the pipeline for bundle adjustment. In our system,
therefore, tracking and mapping run in the same thread and
the steps of bundle adjustment and culling are preformed
every 10 keyframes.

C. Place Recognition for Loop Closing

Instead of DBoW2 [18], we use FAB-MAP [9] as the place
recognition module since in our experiments we experienced
several false positive loop detections. Accordingly, we modi-
fied FAB-MAP to incorporate our new binary descriptor. In
the training phase of FAB-MAP, a codebook is generated from
a large number of visual features. To create this vocabulary
the features are clustered and representative cluster centers
are used as the vocabulary words.

DLab is now used to describe keypoint patches and given
that it is a binary string, two further modifications needed to
be made. First, instead of the Euclidean distance to assign
a feature to a cluster, we use the Hamming distance which
yields the number of bits that are different between two
descriptors. Second, instead of setting the cluster center to
the mean of the assigned feature descriptors, we apply a
majority voting scheme as in [8], i.e., a descriptor of size N
contributes with N votes, where each bit in that descriptor
votes for either one or zero in its corresponding position in
the cluster center. After checking all the descriptors that are
members of a cluster, a bit in position i in the cluster center
would be set to one if it was the majority value and to zero
otherwise. Whenever a new keyframe is created, we pass the
keyframe to FAB-MAP and check whether a loop closure
occurred. The bag-of-words descriptor of the new keyframe
is added to the test set of FAB-MAP for future loop closure
matches only if 10 frames have passed since the last added
keyframe. This increases the chance that there is considerable
visual change in the BoWs test set.

Whenever a loop closure is detected, it needs to be
verified whether it is geometrically valid. Here, we use the

Fig. 4. The robot revisits an old place and FAB-MAP with our descriptor
returns a possible candidate for loop closure. If there are enough matched
features after RANSAC as in this example, a loop closure takes place.

RANSAC scheme described in Sec. IV-A to check whether
a transformation exists and is supported by enough map
point inliers. Fig. 4 shows the matches found after RANSAC
between the current image and the image returned by FAB-
MAP as the robot revisits a previous location. If the detected
loop closure passes the validity test, the matched keyframe
pose is optimized by minimizing the reprojection error as
explained in Sec. IV-A.

To correct the poses of the other keyframes, we construct
a graph with all keyframes between the two matched loop
closure keyframes. Each node represents the camera pose and
an edge is created between any two nodes that have shared
map points. g2o [23] is then used to optimize this graph and
correct poses.

V. EXPERIMENTAL EVALUATION
In this section, we first evaluate the performance of DLab

w.r.t. feature matching in comparison to existing descriptors.
Then, we demonstrate the loop closure capabilities when
using the new descriptor for place recognition and evaluate
the absolute trajectory error during SLAM. Finally, we present
experiments for a comparison of the computational costs when
using the different descriptors.

A. Evaluation of Descriptors

To track frames in visual SLAM, features are matched
between consecutive images and it is essential that the matches
are correct to prevent a wrong pose estimate. In the following
comparative experiments, we evaluate the correctness of
matches using different descriptors. The evaluation follows
the procedure used by Nascimento et al. [4] and Rublee
et al. [1], i.e., points of interest are detected in the images of
the first set with the ORB detector and a signature is generated
by the descriptor. Then, a transformation (described below)
is applied to create a second set of images, in which features
are also detected and described. A pair of features detected
in an image from the first set and the corresponding image
from the second set is considered a match if the distance
between the descriptors is below a certain threshold. The
precision-recall measure is used to evaluate how many of the
matches are correct.

Fig. 5 shows an experiment with the following setting:
1000 images are randomly selected from the TUM benchmark
dataset [24] and 500 interest points are detected in each image.
The images are then transformed by a translation of 10 pixels



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

re
ca

ll

1− precision

ORB
BRAND

SURF
SIFT
DLab

Fig. 5. Precision-Recall for various descriptors when transforming the
images with a translation of 10 pixels. Each point shows the precision and
recall when considering matches with a certain maximum distance between
the descriptors. As can be seen, DLab performs best since it has the highest
recall and precision (note that the x-axis shows 1-precision).

to the right and the detector is run on them again. The patches
around the interest points are described and matched. The
plot is produced by varying the threshold described earlier
so every point in the curve in Fig. 5 depicts the precision
and recall at a certain threshold. The range for the threshold
is [0 : 255] in steps of 5 for the binary descriptors ORB,
BRAND, and DLab. For SIFT, the range is [0 : 10000] in
steps of 100, and for SURF, it is [0 : 10] in steps of 0.1. As
expected, increasing the threshold increases the recall and
decreases precision. As can be seen, our descriptor has the
best precision at high recall values.

There are two sources of error that result in wrong matches.
The first error is tied to the repeatability of the detector. We
noticed that it does not always detect the keypoints at exactly
the same location. This naturally leads to different patches and
the descriptors are consequently slightly different. The second
source of error has to do with the ability of a descriptor to
uniquely identify a patch. In order to reduce the number of
wrong matches, we added two constraints to the matching
process, namely the mutually best match condition and the
sufficient distance to second best match condition (see IV-A).

In Fig. 6 we transformed the images with a rotation of 30◦.
As can be seen, precision is lower than in the case of a simple
translation for all descriptors but still our new descriptor
outperforms the others as it has the best precision at the
highest recall values. We experienced that the depth cue
is valuable here in differentiating features. Our descriptor
produces even better results than the BRAND descriptor.
As explained in Section III, splitting the results of the
appearance and depth tests eliminates the ambiguity that
arises in BRAND.

B. Place Recognition
Recognizing that a place has been visited before is an

important component of SLAM as it helps to minimize the
error in the robot’s trajectory that was accumulated over time.
We evaluated our modified FAB-MAP version, which works
with the new binary descriptors as explained in Sec. IV-C,
in comparison to DBoW2 of ORB-SLAM. Table I shows
the results for two datasets recorded with our Nao robot and

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

re
ca

ll

1− precision

ORB
BRAND

SURF
SIFT
DLab

Fig. 6. Precision-recall when transforming the images with a rotation
of 30◦. Obviously, the precision is lower than when having a transformation
with translation only. Again, DLab has the highest precision.

TABLE I

PLACE RECOGNITION RESULTS

Dataset 1 (2534 frames) Dataset 2 (3160 frames)

Candidates Correct Candidates Correct

FABMAP-DLab 1805 1805 2124 2124

FABMAP-ORB 1876 1862 2280 2266

DBoW2-DLab 2006 187 2488 428

DBoW2-ORB 2032 66 2500 125

DBoW2-ORB 2038 799 2360 430
(original vocabulary)

manually labeled ground truth. The total number of frames is
indicated in the top row for each trajectory. The first column
shows the number of frames that the system has recognized
as frames from previously seen locations, and the second
column indicates how many of those candidates are correct.

For a new image, FAB-MAP returns a probability that
reflects how confident it is that the image is similar to
another one in its database. We follow [17] and only take
into consideration those frames with a confidence value of
0.98 or higher. These are referred to as candidate frames in
the second column of the table.

The results in Table I show that although using FAB-MAP
with ORB leads to a higher detection rate than when using
DLab, the fraction of correct detections in comparison to
the total number of candidates is lower. We argue that for
loop closure in SLAM, precision is more important than
recall, as an incorrect loop closure might cause a wrong pose
estimate from which the robot cannot recover. On the other
hand, missing a loop closure is not an issue since revisiting
a location generates many frames that are similar to older
ones and a loop closure that is not detected by one frame
will be detected by another with a high chance.

The original implementation of ORB-SLAM used DBoW2
as its place recognition component. We ran three experiments
with DBoW2; the first two use the same pool of images to
generate the vocabulary as with the FABMAP experiments,
and the last experiment uses the vocabulary made publicly
available by the authors of DBoW2. In all these experiments,



Fig. 7. The environment where the trajectories were recorded.

TABLE II

ABSOLUTE TRAJECTORY ERROR

Datasets Nao1 Nao2 Nao3 Nao4 Pioneer

Our approach (in m) 0.08 0.1 0.04 0.05 0.03

ORB-SLAM (in m) 0.19 0.23 0.04 0.09 –

DBoW2 generated a large number of false positives, as shown
in Table I, which motivated us to use FABMAP instead. Note
that DBoW2 excludes similar images that were already known
to share map points to restrict candidates to those taken at
different time intervals, accordingly the absolute number of
candidates and correct matches is naturally reduced.

C. Simultaneous Localization and Mapping
Furthermore, we evaluated the complete SLAM system

with our new descriptor. We used the evaluation tool provided
by the TUM benchmark utility [24] to compute the absolute
trajectory error (ATE):

ATE =

√∑
N ‖Xt −Gt‖2

N
, (3)

where Xt and Gt are the estimated and ground truth poses
respectively at time t, and N is the number of pose estimates.

We recorded several trajectories using a Nao robot with
an ASUS Xtion camera mounted on top (see Fig. 1) in an
environment with a motion capture system that provided the
ground truth data. Fig. 7 shows the environment in which we
performed the experiments. Table II shows the corresponding
ATEs.

The top two rows of Fig. 8 show that our system performs
well with data recorded with the Nao robot and outperforms
ORB-SLAM (original version). Pose tracking with legged
robots such as the Nao is more challenging than with wheeled
robots since the movement of the head can result in blurry
images that may not have well-defined features. To check
whether our system also performs well in a different setting,
we tested our approach on a dataset from the TUM benchmark
datasets [24]. The last row of Fig. 8 shows the estimated
and the ground truth trajectory for a Pioneer wheeled robot.
In contrast to ORB-SLAM which is not able to track the
robots pose, our system accurately tracks the trajectory and
performs loop closing.

0.5 m

ATE RMSE: 0.0757 m

Ground truth
Our approach

(a)

Ground truth
ORB-SLAM

0.5 m

ATE RMSE: 0.1905 m

(b)

1 m
Ground truth
Our approach

ATE RMSE: 0.0969 m

(c)

1 m
Ground truth
ORB-SLAM

ATE RMSE: 0.2315 m

(d)

ATE RMSE: 0.0330 m

1 m Ground truth
Our approach

(e)

ATE RMSE: —

Ground truth
ORB-SLAM1 m

(f)

Fig. 8. SLAM results on several datasets. Our system (left column) performs
well and the ATE is lower than when using ORB-SLAM (right column).
The top two rows show the results for data recorded with the Nao robot
in the environment shown in Fig. 7 (datasets Nao1 and Nao2 in Table II)
whereas the last row shows the results for data of a Pioneer robot.

TABLE III

TIME TO COMPUTE 100 DESCRIPTORS OF EACH TYPE

Descriptor ORB DLab SURF BRAND SIFT

Time (ms) 4 14 94 125 132

As can be seen from Fig. 8 (f), ORB-SLAM cannot track
the pose as the robot makes a turn. ORB-SLAM first uses the
motion model from the previous frames to initialize the new
pose. This new pose, however, is not supported by enough
matches so it then tries to compute the transformation from
the keyframe of the local map. Since there was a rotation in
the movement of the robot, the reference keyframe no longer
shares enough points with the current frame and matching
fails.

D. Computational Cost

Finally, Table III shows a comparison w.r.t. computation
time on a single Intel Core Pentium 987 CPU. Here, we



evaluated the time needed to create 100 descriptors of each
type. ORB is the only descriptor that is faster than ours.
However, it only carries appearance information. DLab is
significantly faster than BRAND which also considers depth
information. The main speed-up is attributed to how the
depth information is used. We compare depth values directly,
whereas BRAND computes normals from the point clouds
and uses them in the geometric tests. Furthermore, as shown
in the evaluation in Sec. V-A, our descriptor outperforms
BRAND in feature matching.

A more detailed breakdown of the runtime of our descriptor
showed that the most expensive step is the computation of
the patch orientation. It uses the same method as in SURF
where the Haar wavelet responses are computed and summed
in the x and y directions. Note that the runtimes refer to
single core computation. We expect faster computation times
with parallelization.

VI. CONCLUSION

In this work, we introduced DLab, a new binary descriptor
that uses the intensity, depth, and color information. For
SLAM with humanoids, we proposed to apply DLab within
ORB-SLAM, using a modification of FAB-MAP with our
new binary descriptor for place recognition.

We thoroughly evaluated our approach. First, we conducted
experiments comparing the performance of DLab to existing
descriptors. We verified that the new descriptor has a higher
precision with comparable recall. This makes it especially
useful for SLAM applications where it is hard to recover from
incorrect data associations as they can lead to wrong pose
estimates. Furthermore, we evaluated the place recognition
capabilities with DLab. We found that although it returns
a smaller number of similar images, the percentage of the
correct candidates returned is higher when compared to other
approaches, which is desirable for SLAM since a robot
may never recover from a wrong loop closure. Finally, we
evaluated our complete visual SLAM system on various
real-robot data sets. The results obtained with a Nao robot
equipped with an RGB-D camera demonstrate that our system
outperforms ORB-SLAM as it follows the ground truth
trajectory more closely and has a lower absolute trajectory
error. DLab is able to reliably track features even in sequences
with blurred images, which frequently occur with walking
humanoids, thereby allowing for more robust navigation in
complex environments.

REFERENCES

[1] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient
alternative to SIFT or SURF,” in Proc. of the IEEE Intl. Conf. on
Computer Vision (ICCV), 2011.

[2] R. Hänsch, T. Weber, and O. Hellwich, “Comparison of 3D interest
point detectors and descriptors for point cloud fusion,” ISPRS Annals of
the Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. 2, no. 3, 2014.

[3] F. Tombari, S. Salti, and L. Di Stefano, “A combined texture-shape
descriptor for enhanced 3D feature matching,” in Proc. of the IEEE
Intl. Conf. on Image Processing (ICIP), 2011.

[4] E. Nascimento, G. Oliveira, M. Campos, A. Vieira, and W. Schwartz,
“BRAND: A robust appearance and depth descriptor for RGB-D images,”
in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2012.

[5] X. Xiao, S. He, Y. Guo, M. Lu, and J. Zhang, “BAG: A binary descriptor
for RGB-D images combining appearance and geometric cues,” in Int.
Conf. on Cognitive Systems and Signal Processing. Springer, 2016.

[6] C. Romero-González, J. Martı́nez-Gómez, I. Garcı́a-Varea, and
L. Rodrı́guez-Ruiz, “Binary patterns for shape description in RGB-D
object registration,” in IEEE Winter Conf. on Applications of Computer
Vision (WACV), 2016.

[7] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An open-source SLAM
system for monocular, stereo and RGB-D cameras,” IEEE Trans. on
Robotics (TRO), vol. 33, no. 5, 2017.

[8] D. Gálvez-López and J. Tardos, “Bags of binary words for fast place
recognition in image sequences,” IEEE Trans. on Robotics (TRO),
vol. 28, no. 5, 2012.

[9] A. Glover, W. Maddern, M. Warren, S. Reid, M. Milford, and G. Wyeth,
“OpenFABMAP: An open source toolbox for appearance-based loop
closure detection,” in Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2012.

[10] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D mapping:
Using Kinect-style depth cameras for dense 3D modeling of indoor
environments,” Intl. Journal of Robotics Research (IJRR), vol. 31, no. 5,
2012.

[11] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard,
“An evaluation of the RGB-D SLAM system,” in Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2012.

[12] R. Mur-Artal, J. Montiel, and J. D. Tardós, “ORB-SLAM: A versatile
and accurate monocular SLAM system,” IEEE Trans. on Robotics
(TRO), vol. 31, no. 5, 2015.

[13] N. Figueroa, H. Dong, and A. El Saddik, “A combined approach
toward consistent reconstructions of indoor spaces based on 6D RGB-D
odometry and KinectFusion,” ACM Transactions on Intelligent Systems
and Technology (TIST), vol. 6, no. 2, 2015.

[14] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davison,
P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon, “KinectFusion: Real-
time dense surface mapping and tracking,” in Proc. of the Intl. Symp.
on Mixed and Augmented Reality (ISMAR), 2011.

[15] S. Wang, R. Clark, H. Wen, and N. Trigoni, “DeepVO: Towards end-to-
end visual odometry with deep recurrent convolutional neural networks,”
in Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA),
2017.

[16] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and
J. McDonald, “Kintinuous: Spatially extended KinectFusion,” in RSS
Workshop on RGB-D: Advanced Reasoning with Depth Cameras, 2012.

[17] M. Cummins and P. Newman, “FAB-MAP: Probabilistic localization
and mapping in the space of appearance,” Intl. Journal of Robotics
Research (IJRR), vol. 27, no. 6, 2008.

[18] R. Mur-Artal and J. D. Tardós, “Fast relocalisation and loop closing in
keyframe-based SLAM,” in Proc. of the IEEE Intl. Conf. on Robotics
& Automation (ICRA), 2014.

[19] N. Suenderhauf, S. Shirazi, A. Jacobson, F. Dayoub, E. Pepperell,
B. Upcroft, and M. Milford, “Place recognition with ConvNet land-
marks: Viewpoint-robust, condition-robust, training-free,” in Proc. of
Robotics: Science and Systems (RSS), 2015.

[20] O. Stasse, A. Davison, R. Sellaouti, and K. Yokoi, “Real-time 3D
SLAM for humanoid robot considering pattern generator information,”
in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2006.

[21] A. Pretto, E. Menegatti, M. Bennewitz, W. Burgard, and E. Pagello,
“A visual odometry framework robust to motion blur,” in Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2009.

[22] G. Oriolo, A. Paolillo, L. Rosa, and M. Vendittelli, “Humanoid odomet-
ric localization integrating kinematic, inertial and visual information,”
Autonomous Robots, vol. 40, no. 5, 2016.

[23] R. Kuemmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2011.

[24] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of RGB-D SLAM systems,” in Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2012.


