
Deep Reinforcement Learning for Next-Best-View Planning in
Agricultural Applications

Xiangyu Zeng Tobias Zaenker Maren Bennewitz

Abstract— Automated agricultural applications, i.e., fruit pick-
ing require spatial information about crops and, especially, their
fruits. In this paper, we present a novel deep reinforcement
learning (DRL) approach to determine the next best view for
automatic exploration of 3D environments with a robotic arm
equipped with an RGB-D camera. We process the obtained
images into an octree with labeled regions of interest (ROIs),
i.e., fruits. We use this octree to generate 3D observation maps
that serve as encoded input to the DRL network. We hereby
do not only rely on known information about the environment,
but explicitly also represent information about the unknown
space to force exploration. Our network takes as input the
encoded 3D observation map and the temporal sequence of
camera view pose changes, and outputs the most promising
camera movement direction. Our experimental results show an
improved ROI targeted exploration performance resulting from
our learned network in comparison to a state-of-the-art method.

I. INTRODUCTION

With the development of machine intelligence, mobile robots
or robotic arms equipped with sensors can be deployed
on farms for advanced agricultural applications, such as
fruit picking and targeted crop spraying. Yet in practical
applications, the regions of interest (ROIs), such as fruits,
are possibly completely or partly occluded by leaves. While
mature technology has been developed to infer the shape or
reconstruct it from multi-view observations captured from
fixed locations in the field of computer vision [1]–[3], these
techniques can still fail in complex scenarios, where ROIs
can be occluded from all fixed views. As already stated by
Jayaraman and Grauman, visual perception should not only
do inference from fixed observations but also make decisions
about what to observe [4].

In this paper, we follow a similar line of research and present
an exploration approach for 3D environments that changes
the camera viewpoint to capture new observations that im-
prove the information about the ROIs. Typical next-best-
view (NBV) planners [5]–[12] work in two steps: First, they
generate some candidate view poses, and, second they choose
the NBV pose according to modeled information gain. These
methods have proven to be effective, however, they have
two general drawbacks: (1) Handcrafted metrics need to be
designed to compute the information gain, which is often
troublesome and difficult to migrate, and, (2) conventional
viewpoint planning aims at reconstructing the environment
or objects with the objective to improve the overall coverage
rate. However, some applications, e.g., fruit size and position

This work was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy – EXC
2070 – 390732324. All authors are with the University of Bonn, Germany.

Fig. 1: The goal of our deep reinforcement learning model is to
learn a strategy for effective exploration in a 3D scence containing
certain regions of interest, e.g., clusters of fruit cells. Our model
takes as input an encoded 3D observation map and a sequence of
camera view pose changes, and outputs a camera movement.

estimation, only require knowledge about certain regions of
interest without the need for complete coverage of crops.

Recently, deep reinforcement learning (DRL) based ap-
proaches have also been proposed for exploration. Some
of them require high-dimensional observations to be hand-
crafted [13], others assume prior knowledge about the global
environment to be available [14]. Motivated by these, we
propose a DRL-based exploration approach to decide on the
next best view in a 3D environment space. To represent the
observations acquired with an RGB-D sensor, we construct
an octree of the crops with labeled ROIs, i.e., fruit cells.
For the encoded input to the DRL network, we do not
only rely on known information about the environment, but
also on information about the unknown space to guide the
exploration. Our network takes as input an encoded 3D ob-
servation map, the temporal sequence of camera view pose
pose changes, and outputs the action that should be taken (see
Fig. 1). In our experiments, we evaluated our learned network
in two simulated environments with crops using a robot
arm equipped with an RGB-D camera. The results show
an improved performance on multiple metrics that impact
the subsequent agricultural manipulations actions, e.g., fruit
picking or targeted spraying, compared to the state of the art
in ROI targeted exploration [15].

To summarize, the contribution of our work is a novel
viewpoint planning approach for 3D environments based on
DRL, which aims at detecting and covering as many as
possible regions of interests in a given time limit.

II. RELATED WORK

Traditional exploration approaches rely on various infor-
mation gain metrics to select the next best view, usually
applying ray casting. The metrics are often designed based on
statistics using the number of unknown voxels [12], informa-
tion entropy [9], [10], or additional constraints or trade offs
related to occlusion, safety, or movement cost [8], [11], [16].
Delmerico et al. [17] proposed and evaluated different met-
rics to estimate the volumetric information gain and to
calculate the utility of views, taking also into account the
move costs, to determine the best next view. Furthermore,
Palazzolo et al. [7] presented an efficient exploration ap-
proach based on the cost of reaching a new viewpoint and
information gain. The authors adapt a hull to fit the explored
building or object to select candidate viewpoints. However,
such an approximation can perform less efficient, e.g., on L-
shaped objects. Monica et al. [6] presented a NBV method
that samples viewpoints from frontiers to unknown space to
observe the border of incomplete objects. All those NBV
methods heavily rely on carefully designed, hand-crafted
metrics and are often task- or environment-specific. Thus,
they are not able to easily adapt to different environments.
Most of those approaches aim at improving the coverage rate
of an entire environment, and are not oriented towards special
regions of interest. In contrast, our work based on DRL is
able to automatically learn the best exploration strategy by
taking the poses that lead to higher rewards.

Recently, Hepp et al. [18] proposed to learn information
utility functions by using deep learning to determine the
next best view for 3D scene exploration. Furthermore,
Wang et al. [5] designed a convolutional neural network to
maximize the information gain and predict a direction for the
next best camera move. This approach checks the resulting
volumetric gain by moving the current camera pose to six
directions and chooses the direction with maximum gain
as the motion label. Both are supervised learning methods
that require environment models or a synthesized scene in
advance to generate training data.

Viewpoint planning has also been studied in the agricultural
field. Bulanon et al. [19] analyzed the visibility of citrus
fruits with different sets of fixed camera configurations.
Hemming et al. [20] compared the average fruit detectability
of pepper plants from multiple camera angles. Both these
approaches perform an analysis on viewpoint effects, but
do not provide an active planning strategy. Kurtser and
Edan [21] suggested an approach to select the next best view-
point based on analyzing the fruit occlusion in the current
image. Sukkar et al. [22] proposed to evaluate viewpoints
based on a weighted sum of the number of visible voxels
that have not been previously explored and the visibility of
ROIs and used this evaluation metric to plan a sequence
of viewpoints for multiple robot arms in an integrated path
planner. In our previous work [15], we presented a view-
point planning approach in unknown environments, which
chooses viewpoint candidates that increase the information

gain around the fruit regions and evaluates them using the
expected information gain. As shown, the position and size of
the detected fruits can be estimated after sufficiently covering
the crops. This work was subsequently combined with the
local 3D Move-to-See approach [23] to include additional
occlusion avoidance [24]. In the experimental section, we
provide a comparison to our previous work.

Some DRL-based algorithms have already been proposed to
address exploration problems. For example, Tai and Liu [25]
developed a method to explore room or corridor environ-
ments that do not contain cluttered objects. As a result,
a mobile robot traveled collission-free in the environment
using the depth images from an RGB-D camera as input to
the Q-network. Sampedro et al. [14] combined a classifier
trained for target classification and a DRL-based method
to perform image-based visual servoing tasks. A model-
based object recognizer is utilized to obtain target ROIs in
the environment and the positional error to these targets is
then used to train velocity commands for the robots. The
approach of Niroui et al. [13] was designed for 2D input
data and computes the location of frontier cells and the 2D
occupancy grid of the explored environment, and utilizes
DRL to learn actions that allow a robot to autonomously
explore unknown cluttered environments in urban search and
rescue applications. The observations from the 2D world
are more suitable as the input to the deep neural network,
while from 3D observations it is more difficult to obtain a
simple and effective representation as input to the network.
Jayaraman and Grauman [4] proposed a learning based ap-
proach that processes input views to predict the observation
for viewpoints stored in a viewgrid. Viewpoints are selected
to improve the predicted views, which can be applied for
scene or object shape completion.

III. PROBLEM STATEMENT AND FORMULATION

Our goal is to learn an exploration strategy that can effec-
tively explore a 3D environment while prioritizing detecting
and covering more relevant regions of interests in given
time steps. We developed a deep reinforcement learning
framework that takes as input an encoded 3D observation
map and a sequence of camera view pose changes. The
output of our model is an action in 3D space such as moving
forward or pitching up.

We denote the robot state at time step t as st. At each time
step t, the robot performs an action at, from which we get
the next robot state st+1, the next observation, for which a
3D observation map mt+1 is encoded, and the reward rt.
Formally, the objective of our framework is to learn a policy
function π, which takes the two inputs, i.e., the time-series
state change ∆st,...,∆st−|N |+1 in the past |N | time steps and
the encoded observation map mt, and produces a probability
distribution π(at|∆st, ...,∆st−|N |+1,mt) over the action
space At. The optimal policy is the one which maximizes the
state-action value function Q(∆st, ...,∆st−|N |+1,mt, at)
using the reward.

Fig. 2: Illustration of our learning framework. Based on the RGB-D
stream, the octree is updated, which enables the computation of
the 3D observation map and reward. The encoded observation map
and the camera view pose changes in the last N time steps are
taken by agent to do inference, and are also stored in a prioritized
replay buffer with the reward as an experience for training. In the
navigation module, we use MoveIt [26] to plan the arm motions
to the next viewpoint corresponding to the chosen action, which is
then executed.

IV. DEEP LEARNING FOR 3D EXPLORATION

In this section, we first describe our learning framework.
Then we detail our world representation, the learning setup
including the state representation and action space, the net-
work structure used for training, and the reward design.

A. Framework

Deep Q-learning [27] was proposed to solve the difficulty of
traditional Q-learning methods in maintaining a large-scale
state set. It approximates the value function and uses the
experience replay buffer technique to update the targeted
Q value. Double deep Q network (DDQN) learning [28]
eliminates the overestimation problem by decoupling the
current action selection and the estimation of the future
maximum approximated action value. Prioritized Experience
Replay DQN [29] calculates the experience weights based
on the absolute value of the temporal difference (TD) error
of each experience sample, and stores their priorities in the
experience replay buffer.

Our proposed DRL-based exploration framework is pre-
sented in Fig. 2. At each time step, the robot executes the
current action at and moves to the next pose st+1. The new
robot state st+1 can be computed under the assumption that
the robotic arm performs the action accurately. The RGB-D
camera attached to the robotic arm generates the RGB-D
stream, which we use to update the octree to store the newly
obtained information about occupied, free, and ROI voxels
in the limited field of view (FOV). Then, the reward rt is
calculated based on newly detected ROI and free voxels and
the next observation mt+1 is encoded.

Our agent uses a Double DQN to predict the expected value
of each action and generate the next action at+1, taking
as input a sequence of camera view pose changes and the
current observation. Meanwhile, the robot state ∆st+1 and
observation map mt+1 are stored in the Prioritized Replay

Buffer, as well as the reward rt. The agent chooses the action,
a motion planning module based on MoveIt [26] plans the
corresponding arm motion, and the robot arm executes it.

B. World Representation

Our world representation maintains the information of the
environment in form of an octree generated from the data
of an RGB-D camera. The voxel values are categorized into
free, occupied, ROIs, and unknown cells.

The camera has a limited frustum-shaped field of view, with
horizontal angle range ψfov , vertical angle range θfov and
distance range dfov . When the camera moves and obtains a
new observation, the voxels in the field of view are updated
based on the new observations.

To do that, rays are cast from the camera origin to the points
extracted from the depth image. The occupancy probability
of hit voxels is updated to be more likely free, while the
probability of the voxels corresponding to the points are
updated to be more likely occupied. To obtain the target
voxels for fruit coverage, fruits can be detected as ROIs either
with color thresholding or an object detection network. For
our simulated scenarios we used color thresholding to filter
the red pixels, since the used plants contain only red peppers.
Details on creating such an octree can be found in [15].

C. Learning Setup

The input to the network consists of the temporal relative
camera pose in the last N time steps and an observation
map at time step t as described in detail in the following.
1) State Representation: We indicate the state st of the robot
as the position and viewing direction of the RGB-D camera
attached to the robot arm:

st = [xt, yt, zt, αt, βt, γt]

where [xt, yt, zt] is the position pt and [αt, βt, γt] is the view
direction rt of the camera at time step t respectively.

The relative camera movement of two consecutive time steps
is defined as:

∆st = st − st−1

If necessary, the action is adapted according to the space
boundaries, dynamics limitations, and collision with occu-
pied cells (fruits and leaves) in the environments.
2) Observation Map: When the robot arm moves to the
next viewpoint, it will obtain a new observation, from which
we construct an observation map. The complex 3D data
provided by the octree is not suitable as input to the neural
network, especially for unsupervised learning. Therefore, it
is necessary to design a simpler representation. We generate
an egocentric observation map mt based on the octree.
Originating from the camera, we cast rays up to a distance
dobs through the voxels, with an azimuthal angle step ∆ψobs
and a polar angle step ∆θobs, and divide the ray into |D|
segments in depth to encode distance information. We then
count the number of unknown, free, occupied and ROI voxels
along the segmented rays. Then, we construct an observation

Fig. 3: Illustration of our network architecture for training the DDQN. Details are described in Sec. IV-D.

Fig. 4: Example of two consecutive observation maps at
depth L = 3. The red pixels indicate ROI voxels in that area, with
saturation corresponding to the count, yellow means unknown vox-
els, green corresponds to free voxels, and blue indicates occupied
voxels. This observation map is the one with the highest reward
from one of the episodes. Note the change between the observation
maps of two time steps t− 1 and t, where mt has more red pixels
compared to mt−1. If a cell has no value for any count, it lies
outside of the camera’s workspace.

map of size |W | × |H| × |D| × 4, where |W | = 2π
∆ψobs

,
|H| = π

∆θobs
(see Fig. 4).

3) Actions: The agent has six categories of translations, i.e.,
move forward / backward, move left / right, move up / down
and four categories of rotations, i.e, pitch up / down, yaw
left / right, thus, the action space size is 10. The rolling
rotation is omitted since it does not change the field of view
for camera much.
4) Reward: We aim to improve the exploration ability
prioritizing looking for ROI cells appearing in clusters in
the inititally unknown environment. The reward is therefore
given by weighting the number of newly found ROI voxels
and newly found occupied voxels, and additionally rewarding
the coverage of the unknown area:

R = α ∗Nroi + β ∗Nocc + γ ∗Nvisit

where Nroi and Nocc are the number of newly observed
ROI voxels and occupied voxels, respectively, and α, β, γ

are weighting factors.

Rewarding the coverage of unknown area encourages the
general exploration. A coverage map is stored, which divides
the whole environment space into several parts, with 16 ×
16 × 16 size for each parts. Once the camera arrived at a
new voxel, the voxel and its neighbors are marked as 1 in
this coverage map. The reward Nvisit is given by how many
new voxels are marked as 1. The larger the Nvisit is, the
more unfamiliar this part of area is.

D. Network Architecture

As shown in Fig. 3, our network architecture contains
multiple modules.
1) O Module: This module has a convolution layer fol-
lowed by two fully connected layers. It takes as input the
observation map of |D| × |W | × |H| × 4, where the depth
channel and the voxel category channel are concatenated. In
the agriculture application, fruit voxels typically appear in
clusters. Thus, it is likely that if a ROI voxel is observed,
multiple ROI voxels are around it. The O Module module
is able to learn by training that the unknown area is possibly
more worthwhile than the known area to visit, and the
unknown area near a ROI area is more likely to obtain
more rewards. Besides, the observation map contains the
information of which parts are unknown, which parts are
known, and which parts contain ROI voxels in the known
environment. With this input, the module is able to extract
effective information for guiding the action selection.
2) T Module: This module contains a long short-term
memory (LSTM) unit which encodes the temporal informa-
tion of the relative camera movements in the past N time
steps. By using relative position and rotation, our network
is able to infer where the camera has been recently and
where it came from to guide the action selection. It takes as
input a sequence of the past |N | camera view pose changes
∆st−|N |+1, ...,∆st.

All convolution layers and fully connected layers are fol-
lowed by a ReLU activation function [30] in our network
structure. The outputs from these two modules are concate-
nated to the last two fully connected layers and output the
Q values for each action.

V. EXPERIMENTS

In this section, we first describe our experimental scenarios
and setup. Afterwards, we evaluate our learning approach and
compare it to a state-of-the-art method on crop exploration
using metrics relevant to agricultural applications.

A. Simulation Environments and Training

We designed two simulation environments to train our net-
works.
1) P3D Environment: The first environment was designed to
enable fast training in a randomized scenario to evaluate the
general exploration behavior of our approach. It is based on a
voxel grid with 400×400×150 cells, consisting of four crops
with fruits as regions of interest. We assume a cell resolution
of 1 cm, making the plants approximately 0.85 m high. A
visualization of the environment with Panda3D [31] is shown
in Fig. 5(a). Within the voxel grid, we simulate the depth
readings of a camera, which can be placed at an arbitrary
position that does not have to be aligned with the cells. As
described in the previous section, we consider ten actions
to move the camera. We set the translational step size to a
fixed value of 2 cm, and the angular step size to 20◦. The
horizontal FOV ψfov of the simulated camera is 80◦, the
vertical FOV θfov 60◦, the sensor range dfov 300 cm, and
the used camera resolution is 80 × 60. From these values,
the visible cells are computed after each camera movement.
For this environment, we specified the fruit cells as the ROI
cells and the leaf cells as the occupied cells.

We trained our policy in this environment with four crops
at random positions on the ground, and a randomly initial-
ized camera position. An episode ends when it reaches the
maximum step 300.
2) ROS Environment: The second environment also consists
of four crops, two of which have a total of 14 fruits, and a
robotic arm with an RGB-D camera at its tip is placed on
a pole (see Fig. 5(b)). The environment was designed using
Gazebo and a simulated robotic arm with an RGB-D camera
in ROS. The ten output commands of the neural network
are converted into relative pose changes, which are used to
move the arm through its MoveIt interface. Here, we used
an angular step size of 15◦, but increased the translational
step size to 10 cm. We used this environment to evaluate
our DRL-based approach in comparison to a state-of-the-art
method [15] on relevant metrics that impact subsequent fruit
picking or targeted spraying.

Here, we trained only in the scenario shown in Fig. 5(b) with
no randomization, so the trained model is not generalized.
Therefore, this model is suited for repeated coverage of a
known environment, e.g., in a glasshouse where the position
of the crops stays the same. A model trained on recorded
data can be used to get better coverage in these scenarios.

B. Evaluation

1) P3D Environment: We evaluated our models with respect
to coverage rate of occupied and ROI cells, averaged over
30 episodes, and compared with two following baselines.

(a) P3D Environment (b) Ros Environment

Fig. 5: Visualization of the two simulation environments, both
containing four crops with some fruits (indicated by magenta and
red). (a) P3D Environment where the yellow frame represents the
field of view of a free floating camera. The plant positions are
randomized in each episode for both training and evaluation. (b) The
ROS Environment contains a robot arm mounted on a pole equipped
with am RGB-D camera.

(a) Coverage rate of ROI cells (b) Coverage rate of occupied cells

Fig. 6: Average results over 30 episodes within 400 time steps in the
P3D Environment. (a) Coverage rate of ROI cells: ratio of observed
ROI cells to observable ROI cells. (b) Coverage rate of occupied
cells: ratio of found occupied cells to observable occupied cells. As
can be seen, our policy found about 73% of the ROI cells and 85%
of the occupied cells.

• Random policy: The camera starts from the center of the
scenario, and randomly executes one of the 10 actions.

• Perimeter policy: The camera moves around the com-
plete perimeter of the rectangular space while facing
towards the inside. For each shift, it performs two
random rotation actions and then rotates back.

Performance in a randomized environment: As shown in
Fig. 6, our policy found about 73% of the ROI cells and 85%
of the occupied cells at time step 400 in an environment
where the positions of both plants and camera randomly
changed for each episode, with an ϵ-greedy policy (ϵ =
0.15). A completely random policy covers only about 22%
of the ROI cells and 35% of the occupied cells at that time
step, and the perimeter policy reaches about 40% and 55%
respectively.

Qualitative Result: Fig. 5(a) visualizes the camera trajectory
resulting from the trained policy applied in one of the random
environments. The yellow frame line represents the final
camera FOV. The camera path starts from white and ends at
red. The short lines attached to the path indicate the camera

(a) Camera trajectory (b) Covered ROI volume (c) ROI percentage (d) True ROI keys

Fig. 7: (a) Example camera trajectory resulting from our learned policy in a random P3D Environment. The camera path starts at the
white spot and ends at red with the indicated field of view. The short attached lines indicate the camera viewing direction. As illustrated,
our agent learned to rotate around the crops and keep looking towards them, while also exploring unknown areas. (b-d) show results for
the ROS Environment. For each approach, 20 trails were performed with a duration of two minutes. The plots show the average results.
As can be seen, our learned model performs better in finding more ROIs in a shorter time compared to our previous approach [15].

viewing directions. As can be seen, the system learned to
rotate around the crops and keep looking towards them, while
also exploring unknown areas.

Generalization: The trained policy generalizes to scenes
outside the training setting. For example, we can apply the
policy trained in a P3D Environment with 4 crops to one with
2-8 crops in an ϵ-greedy way (ϵ = 0.15), and still receive
similar ROI coverage ratios (Tab. I).

Number of crops
2 4 6 8

ROI coverage 0.745 0.726 0.722 0.675

TABLE I: Generalization with respect to the number of crops in
the environment. As can be seen, our policy achieves a high ROI
coverage rate also outside the training setting.

2) ROS Environment: In the ROS environment, we evaluated
our approach, with a sequence length of 5 for the LSTM
layer, against our previous work [15] based on three met-
rics. This approach performs global viewpoint planning and
samples potential viewpoints either at the frontier of partially
detected fruits or at more general frontiers for exploration.
Then, it computes the utility of the viewpoints taking into
account the information gain and movement cost, and moves
the camera to the viewpoint with the highest utility. As
metrics we used

• Covered ROI volume: Percentage of the total volume of
the ground truth ROI volume (fruits) that was detected,
based on clustering the ROI cells and approximating the
clusters with bounding boxes.

• ROI percentage: Percentage of ground truth fruits that
were found, i.e., that can be matched with found clus-
ters, which means that their center distance is smaller
than 20 cm.

• True ROI keys: The amount of detected ROI voxels that
are also in the ground truth.

Fig. 7 (b-d) illustrate the average performance of three met-
rics over a planning time of two minutes. ”Global planner”

refers to the approach presented in [15]. As can be seen, our
trained model takes shorter time to cover more of the ROI
volume and discover a higher number of the fruits compared
to the global planner. In addition, our network leads to the
highest number of true ROI keys. These results show that
our learned policy performs better especially at the start of
an episode. In the beginning, there is little information about
the environment, so traditional approaches like the presented
baseline can struggle to find the best moves. Here, using
learned models can be beneficial.

VI. CONCLUSIONS

In this work, we proposed a novel approach to exploration of
3D environments containing specific regions of interest with
a robotic arm. We process the observations of an RGB-D
camera into an octree and generate 3D observation maps,
which contain information about unknown, free, occupied,
and ROIs voxels to guide the search. Our network takes as
input the encoded 3D observation map and the temporal se-
quence of camera view pose changes, and outputs the camera
movement, which is then translated into a movement of the
robotic arm to obtain the next observation. We trained and
evaluated our model in two different simulated environments.
The results demonstrate the capabilites of our approach to
perform ROI targeted exploration and show an improved
exploration performance resulting from our learned network
compared to a state-of-the-art method. The source code of
our framework as well as the environments are available on
GitHub1.

REFERENCES

[1] H. Chen, P. Guo, P. Li, G. H. Lee, and G. Chirikjian, “Multi-person
3d pose estimation in crowded scenes based on multi-view geometry,”
in European Conference on Computer Vision. Springer, 2020, pp.
541–557.

[2] S. Fuhrmann, F. Langguth, and M. Goesele, “Mve-a multi-view
reconstruction environment.” in GCH. Citeseer, 2014, pp. 11–18.

[3] A. M. Andrew, “Multiple view geometry in computer vision,” Kyber-
netes, 2001.

1https://github.com/zengxyu/vpp-learning

[4] D. Jayaraman and K. Grauman, “Learning to look around: Intelligently
exploring unseen environments for unknown tasks,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 1238–1247.

[5] Y. Wang, S. James, E. K. Stathopoulou, C. Beltrán-González, Y. Kon-
ishi, and A. Del Bue, “Autonomous 3-d reconstruction, mapping, and
exploration of indoor environments with a robotic arm,” IEEE Robotics
and Automation Letters, vol. 4, no. 4, pp. 3340–3347, 2019.

[6] R. Monica and J. Aleotti, “Contour-based next-best view planning
from point cloud segmentation of unknown objects,” Autonomous
Robots, vol. 42, no. 2, pp. 443–458, 2018.

[7] E. Palazzolo and C. Stachniss, “Effective exploration for mavs based
on the expected information gain,” Drones, vol. 2, no. 1, p. 9, 2018.

[8] S. Isler, R. Sabzevari, J. Delmerico, and D. Scaramuzza, “An informa-
tion gain formulation for active volumetric 3d reconstruction,” in 2016
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2016, pp. 3477–3484.

[9] S. Kriegel, C. Rink, T. Bodenmüller, and M. Suppa, “Efficient next-
best-scan planning for autonomous 3d surface reconstruction of un-
known objects,” Journal of Real-Time Image Processing, vol. 10, no. 4,
pp. 611–631, 2015.

[10] C. Potthast and G. S. Sukhatme, “A probabilistic framework for next
best view estimation in a cluttered environment,” Journal of Visual
Communication and Image Representation, vol. 25, no. 1, pp. 148–
164, 2014.

[11] J. I. Vasquez-Gomez, L. E. Sucar, R. Murrieta-Cid, and E. Lopez-
Damian, “Volumetric next-best-view planning for 3d object recon-
struction with positioning error,” International Journal of Advanced
Robotic Systems, vol. 11, no. 10, p. 159, 2014.

[12] P. Quin, G. Paul, A. Alempijevic, D. Liu, and G. Dissanayake, “Effi-
cient neighbourhood-based information gain approach for exploration
of complex 3d environments,” in 2013 IEEE International Conference
on Robotics and Automation. IEEE, 2013, pp. 1343–1348.

[13] F. Niroui, K. Zhang, Z. Kashino, and G. Nejat, “Deep reinforcement
learning robot for search and rescue applications: Exploration in
unknown cluttered environments,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 610–617, 2019.

[14] C. Sampedro, A. Rodriguez-Ramos, H. Bavle, A. Carrio, P. de la
Puente, and P. Campoy, “A fully-autonomous aerial robot for search
and rescue applications in indoor environments using learning-based
techniques,” Journal of Intelligent & Robotic Systems, vol. 95, no. 2,
pp. 601–627, 2019.

[15] T. Zaenker, C. Smitt, C. McCool, and M. Bennewitz, “Viewpoint
planning for fruit size and position estimation,” in Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2021.

[16] J. Wettach and K. Berns, “Dynamic frontier based exploration with a
mobile indoor robot.” in ISR/ROBOTIK, 2010, pp. 1–8.

[17] J. Delmerico, S. Isler, R. Sabzevari, and D. Scaramuzza, “A com-
parison of volumetric information gain metrics for active 3d object
reconstruction,” Autonomous Robots, no. 42, 2018.

[18] B. Hepp, D. Dey, S. N. Sinha, A. Kapoor, N. Joshi, and O. Hilliges,
“Learn-to-score: Efficient 3d scene exploration by predicting view
utility,” in Proc. of the Europ. Conf. on Computer Vision (ECCV),
2018, pp. 437–452.

[19] D. Bulanon, T. Burks, and V. Alchanatis, “Fruit visibility analysis for
robotic citrus harvesting,” Transactions of the ASABE, vol. 52, no. 1,
pp. 277–283, 2009.

[20] J. Hemming, J. Ruizendaal, J. W. Hofstee, and E. J. Van Henten, “Fruit
detectability analysis for different camera positions in sweet-pepper,”
Sensors, vol. 14, no. 4, pp. 6032–6044, 2014.

[21] P. Kurtser and Y. Edan, “The use of dynamic sensing strategies to
improve detection for a pepper harvesting robot,” in Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS). IEEE,
2018, pp. 8286–8293.

[22] F. Sukkar, G. Best, C. Yoo, and R. Fitch, “Multi-robot region-
of-interest reconstruction with Dec-MCTS,” in Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2019.

[23] C. Lehnert, D. Tsai, A. Eriksson, and C. McCool, “3d move to see:
Multi-perspective visual servoing towards the next best view within
unstructured and occluded environments,” in Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2019.

[24] T. Zaenker, C. Lehnert, C. McCool, and M. Bennewitz, “Combining
local and global viewpoint planning for fruit coverage,” in Proc. of
the Europ. Conf. on Mobile Robotics (ECMR), 2021.

[25] L. Tai and M. Liu, “A robot exploration strategy based on q-learning
network,” in IEEE Int. Conf. on Real-Time Computing and Robotics
(RCAR), 2016.

[26] Moveit.ros.org, https://github.com/ros-planning/moveit2/.

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[28] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 30, no. 1, 2016.

[29] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experi-
ence replay,” arXiv preprint arXiv:1511.05952, 2015.

[30] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv
preprint arXiv:1803.08375, 2018.

[31] M. Goslin and M. R. Mine, “The panda3d graphics engine,” Computer,
vol. 37, no. 10, pp. 112–114, 2004.

