

 Rheinische

 Friedrich-Wilhelms-

 Universität Bonn

Institut für Informatik
Abteilung VI
Humanoid Robots Lab

Institut für Informatik

Humanoid Robotics

Assignment 6

Due Tuesday, June 3rd, before lecture.

Motion Planning:

1. Collision Representation Trade-off (Total: 3 points)

A 3-link robot arm must plan motion in a 3D environment with a single static point obstacle (e.g., a peg or wall

corner). Each link is a straight cylinder of length 1 meters and radius 0.2 meters. For collision checking, the

following geometric approximations may be used:

• Full triangle mesh

• Axis-aligned box

• One sphere per link (radius = 1m)

• Multiple spheres per link (e.g., 5 overlapping spheres per link)

a. Rank these four options in terms of: (2 points)

 (i) Ease of collision checking (1 = easiest)

 (ii) Accuracy of representation (1 = most accurate)

b. Which representation offers the best balance for real-time manipulation in semi-cluttered scenes (e.g.,

picking from shelves)? Justify your answer in one sentence. (1 point)

2. RRT Motion Planning with Collision Checking (12 points)

In this task, you will implement and evaluate several variants of the Rapidly-Exploring Random Tree (RRT)

algorithm for a mobile robot navigating a 2D environment represented by PNG file where black represents

obstacles and white represents free space. The start and goal positions are specified for each world.

You will design your RRT planner in a modular and extensible way, guided by well-defined abstract interfaces.

The assignment emphasizes software design, algorithmic understanding, and empirical evaluation. Your

ultimate goal is to assess how different planning components affect feasibility, efficiency, and path quality.

Some combinations may lead to failures, and it is important to report them.

The codebase includes abstract base classes for Sampler, Connector, and CollisionChecker interfaces.

Also, we provide concrete implementations for UniformSampler and PointCollisionChecker. A partially

implemented RRTPlanner is provided with visualization, tree tracking, and path saving utilities. A timer utility

is also included for consistent runtime measurement.

Important: All your code must conform to the APIs of the provided abstract classes

a. Direct Connector Implementation: (1 point)

Implement direct connection (greedy connect to sample). Use appropriate method of point collision

checking for the same.

Prof. Dr. Maren Bennewitz

Adresse:

Friedrich-Hirzebruch-Allee 8
53115 Bonn

 Rheinische

 Friedrich-Wilhelms-

 Universität Bonn

Institut für Informatik
Abteilung VI
Humanoid Robots Lab

Institut für Informatik

b. RRT Pipeline Implementation: (2 points)

Now, that we have a concrete implementation for Sampler, Connector and CollisionChecker, use an

instance of each to develop a modular RRT planner. You should not hardcode sampling or collision logic.

Implement the necessary logic in the run method of the RRT planner. Ensure your code is modular and

extensible to support different types of samplers, connectors and collision checkers.

c. Goal Biased Sampling Strategy: (1 point)

Implement a GoalBiasedSampler where the planner should sample the goal with a fixed probability.

d. Incremental Connection (fixed step size): (1 point)

Implement an IncrementalConnector that connects the nearest node to the sampled point in small steps.

This connector checks if the path from the nearest node to the sampled point is collision-free by moving in

small increments (step size).

e. Collision Checking: (2 points)

You are already provided with a PointCollisionChecker. In addition, implement:

- CircleCollisionChecker: Treat the robot as a circular disc with radius 5 and 10 pixels

- RectangleCollisionChecker: Treat the robot as an axis-aligned rectangle (e.g., 10×5 px)

Ensure your implementation works for both point and segment validation.

f. Tabulation and Discussion: (5 points)

World Sampler Connector Checker Radius/Size Notes

world1 uniform direct point — sanity check, baseline

world1 goalbiased direct point — effect of goal-bias in open
space

world1 uniform direct circle 5 px validate circle fit in open

world1 uniform direct rectangle 10×5 px validate rectangle fit in open

world2 uniform incremental(5) point — narrow: fine step

world2 uniform incremental(10) point — narrow: coarse step

world2 uniform direct point — direct in S

world2 goalbiased incremental(5) point — effect of bias

world3 uniform direct point — baseline

world3 uniform direct circle 10 px larger circle tests

world3 uniform incremental(10) point — step size effect

world3 goalbiased direct point — bias effect in clutter

world4 uniform direct point — baseline in two‐room map

world4 uniform direct circle 5 px tests collision in room

world4 uniform direct circle 10 px tests collision in room

world4 uniform incremental(10) point — step vs branch choice

world4 goalbiased direct point — Effect of bias

world4 goalbiased incremental(5) point — full narrow, bias, fine‐step

world4 goalbiased incremental(10) circle 5 px all factors combined

world4 goalbiased incremental(10) circle 10 px all factors combined

Use the provided experimental design table and run a total of 20 meaningful planner configurations across 4
different world maps. Your experiments must include combinations of different samplers, connectors,
collision checkers, and robot sizes.

 Rheinische

 Friedrich-Wilhelms-

 Universität Bonn

Institut für Informatik
Abteilung VI
Humanoid Robots Lab

Institut für Informatik

A Timer utility function and a function for calculating the path length has been provided. Similarly, we have

provided a function for saving results. Also, we have provided options to test configurations manually or a

single yaml file or all the 20 yaml file configurations. We use a fixed seed 42 for random generation. So, results

will be identical across runs.

You must tabulate the results (success/failure, runtime overall, runtime for collision, total iterations, path length)

and write a short discussion addressing the following questions:

- What effect does goal biasing have on speed and success?

- How do collision checkers affect feasibility?

- What patterns do you observe as robot size increases?

- How does step size in the connector influence path smoothness or failure rate?

- Which configurations perform well in which types of environments?

3. Extending RRT to Bi-RRT Motion Planning (Bonus: 5 points)

The RRT algorithm builds a tree from the start state toward the goal. Bi-RRT (Bidirectional RRT) extends this

idea by growing two trees — one from the start and one from the goal — and trying to connect them in the

middle. In this bonus task, you must implement a modular version of Bi-RRT using the same Sampler,

Connector, and CollisionChecker interfaces.

a. Bi-RRT Planner Implementation: (3 points)

Implement a class BiRRTPlanner that:

• Grows two trees: one from the start and one from the goal

• Alternates tree expansion between the two

• Attempts to connect the two trees when nodes are within a predefined threshold

Your implementation must:

• Reuse your Sampler, Connector, and CollisionChecker classes

• Return a complete path if a connection is found (start → meeting point → goal)

• Visualize the process similarly to RRT

b. Evaluation and Comparison with RRT: (2 points)

Run your Bi-RRT planner on the following 5 configurations:

World Sampler Connector Checker Notes

world1 uniform direct point Trivial open-space: measures Bi-RRT
overhead vs. RRT baseline

world2 uniform incremental (5) point Narrow S-corridor: RRT vs Bi-RRT

world4 uniform incremental (5) point Branching two-room

world2 uniform incremental (5) circle (r=10) Large robot in narrow corridor

world4 uniform incremental (5) circle (r=10) Large robot in branching map

For each configuration, compare Bi-RRT to your original RRT planner in terms of:

Success or failure, Runtime Overall, Path length, Number of iterations until connection. Present your results

in a small table and answer the following:

• Did Bi-RRT reach the goal faster or more reliably?

• In which worlds did Bi-RRT show a clear advantage over standard RRT?

