
3D World Representations

Maren Bennewitz, Rohit Menon

Humanoid Robots Lab, University of Bonn

Goal of This Chapter

• Overview of different 2.5/3D world representations with
their strengths and weaknesses

• Understand which representation is useful for which
application

• Know how to calculate transformations between point
clouds

Robots in 3D Environments

source: Honda

Motivation

• Robots live in the 3D world

• Collision avoidance, motion planning, and localization
require accurate 3D world models

• Given: 3D point cloud data from known robot and sensor
poses

• Question: How to represent the 3D structure of the
environment?

Laser Scanning Principle

Range scanners measure the distance
to the closest obstacle

Image courtesy: Sick

Example: Data Acquisition

Popular Representations of the 3D World

• Point clouds

• Voxel grids

• Height maps

• Surface maps

• Meshes

• Distance fields

• …

All models are wrong, but some are useful

- George Box

Point Clouds

• Set of 3D data points in world frame

• Obtained, e.g., by a laser scanner or depth camera

Point Clouds

Pros

• No discretization of data

• Mapped area not limited

Cons

• Unbounded memory usage

• No constant time access for location queries

• No distinction between free or unknown space

Point Clouds and Efficient Location Queries

• Naïve implementation (list, array) has a linear complexity
for location queries

• More effective solutions through
kd-trees

• kd-trees operate in k-dimensions

• Space-partitioning data structure for organizing k-
dimensional points

• Search/insert/delete in logarithmic time on average

Example: kd-Tree (2-dim.)

Binary space partitioning

Image courtesy: Wikipedia

From Depth Maps to Point Clouds

[Xu, Hantong & Xu, Jiamin & Xu, Weiwei. (2019). Survey of 3D modeling using depth cameras.]

From Depth Maps to Point Clouds

• Each depth map point 𝑥𝑚 with coordinates 𝑢, 𝑣 represents
the distance 𝑧 from the focal point to the world point 𝑀
along the principal axis

• 𝑧 = 𝐷 𝑢, 𝑣 , 𝑥 = 𝑧 ⋅
𝑢−𝑐𝑥

𝑓𝑥
, 𝑦 = 𝑧 ⋅

𝑣−𝑐𝑦

𝑓𝑦
, 𝑀 = [𝑥, 𝑦, 𝑧]

• 𝐶 → Camera Center

• 𝑃 → Image Center or Principal Point i.e. Coordinates of P in

Image Plane = 𝑐𝑥 , 𝑐𝑦

• 𝑓𝑥 , 𝑓𝑦 → Focal Length along x and y axes. Typically similar if

pixels are scaled identically along both axes

How to Align Depth and RGB Images?

• Example scenario: RGB 1920×1080, Depth 640×480,
unsynced sensors.

• Undistort both images with respective parameters

• Convert depth (640×480) to 3D points

• Apply extrinsic R,T to 3D points

• Project into 1920×1080 RGB image plane

• Interpolate depth to RGB image using nearest values

• Different point types: PointXYZ, PointXYZI, PointXYZRGB,
etc.

2.5D Maps: Height Maps

Average over all points that fall into a 2D cell and consider
this as the height value

2.5D Maps: Height Maps

Pros

• Memory efficient (2D)

• Constant time access

Cons

• No vertical objects

• Only one level is represented

Example: Problem of Height Maps

3D Voxel Grids

3D Voxel Grids

Pros

• Volumetric representation

• Constant access time

• Probabilistic update possible

Cons

• Memory requirement: Complete grid is allocated in memory

• Extent of the map has to be known/guessed

• Discretization errors

Octree-Based Representation

• Tree-based data structure

• Recursive subdivision of the space into octants

• Volumes allocated
as needed

• “Smart” 3D grid

Octrees

Octrees

Pros

• Full 3D model

• Inherently multi-resolution

• Memory-efficient, volumes
only allocated as needed

• Probabilistic update possible

Cons

• Efficient implementation can be tricky
(memory allocation, update, map files, …)

Multi-Resolution Queries

0.08 m 0.64 m 1.28 m

OctoMap Framework

• Based on octrees

• Probabilistic, volumetric representation of occupancy
including unknown

• Supports multi-resolution map queries

• Memory efficient

• Generates compact map files (maximum likelihood map as
bit stream)

• Open source implementation as C++ library available at
http://octomap.github.io/

Ray Casting for Map Updates

• Ray casting from sensor origin to end point in the map
along the beam

• Mark last voxel as occupied, all other voxels on ray as free

• Measurements are integrated probabilistically given the
robot’s pose (recursive binary Bayes’ filter)

end point

sensor origin

[Lecture on Cognitive Robotics]

Probabilistic Map Update

• Occupancy probability modeled as recursive
binary Bayes’ filter

• Efficient update using log-odds notation

[Lecture on Cognitive Robotics]

Video: Large Outdoor Area

Freiburg computer science campus

(292 x 167 x 28 m³, 20 cm resolution)

Octree in memory:
130 MB

3D Grid:
649 MB

Octree file: 2 MB
(bit stream)

Online Mapping With Octomap

[D. Maier, A. Hornung and M. Bennewitz, Humanoids 2012]

Signed Distance Function

Signed Distance Function (SDF)

Key idea:

– Instead of representing occupancy values, represent the
distance of each cell to the nearest measured
surface

– The surface can be extracted afterwards at sub-voxel
accuracy

Signed Distance Function (SDF)

• Grid maps: explicit representation

• SDF: implicit representation

0 1 0.5 0.5

x

0: free space 1: occupied

x

-1.3 -0.3 0.7 1.7
negative =

outside obj.

positive =

inside obj.

SDF Approach

1. Compute the signed distance values

2. Extract the surface using interpolation

3. The surface is located at the zero-crossing

x

-1.3 -0.3 0.7 1.7
negative =

outside obj.

positive =

inside obj.

Properties

• Noise cancels out over multiple measurements

• Zero-crossing can be extracted at sub-voxel accuracy

x x

obs 2obs 1

Voxel Grid to Store SDF in 3D

D(x) < 0

D(x) = 0

D(x) > 0

Negative signed distance (=outside)

Positive signed distance (=inside)

in general, there are
several measurements
for the voxels

Weighting Function for Multiple
Measurements

• For each voxel along the beam, weigh the observation
according to its confidence

• Small weights ensure that values can be updated when new
observations are available

measured
depth

weight

(=confidence)

signed distance

to surface

SDF

For each voxel along the beam, store

• Distance to the next surface

• Weight

Truncated SDF

• Compute the SDF from a depth image

• Compute the distance of the voxels to the observed
surface along the beam

• Update only a small region around the endpoint for
efficiency (truncation)

camera

Weighted Update

For each voxel, calculate the weighted average over all its
measurements

several measurements of the voxel

observations
from known
camera poses

Weighted Average

• For each voxel, store two values

–Weighted sum of signed distances

–Sum of all weights

• When new data arrive, update the values of each voxel
according to

incremental computation
of the weighted mean

SDF Example

A cross section through a 3D signed distance function of a
real scene

SDFSurface with cross-section

brightness encodes brightness encodes distance

Surface Rendering

1. Ray casting (GPU, fast)
For each camera pixel, shoot a ray and search for the zero
crossing

2. Polygonization (CPU, slow)
Use the marching cubes algorithm to
generate a triangle mesh

Ray Casting

• For each pixel, shoot a ray and search for the first zero
crossing in the SDF

• Value in the SDF can be used to skip along the ray when far
from surface

Mesh Extraction Using Marching Cubes

• Process the whole grid

• Find zero-crossings in the signed distance function by
interpolation

3D2D

Marching Squares (2D)

• Evaluate each cell separately

• Check which vertices are inside/outside

• Generate triangles according to 16 lookup tables

Case 3

Case 2

Marching Cubes (3D)

http://users.polytech.unice.fr/~lingrand/MarchingCubes/algo.html

Signed Distance Functions

Pros

• Full 3D model

• Sub-voxel accuracy

• Supports fast GPU
implementations

Cons

• Space-consuming voxel grid

• Polygonization: slow

Application: Estimation of Traversable
Terrain using TSDF

[Fallon, Deits, Whelan, Antone, McDonald, and Tedrake, Humanoids 2015]

Application: Learning Accurate 3D Models

[Sturm, Bylow, Kahl, Cremers; GCPR 2013]

Multi-Layer Mapping

Multi-Layer Mapping

• All the 3D world representations studied till now have
geometric features

–Occupancy probability

–Weight and Signed Distance Field

• However, scene understanding need other features in
addition to metric features

–Semantics i.e. class labels

–Instance ID

–Uncertainty/Confidence

Semantic Aware Volumetric Mapping

Key idea:

– Combine semantic scene understanding with geometric
information to produce semantic aware volumetric
mapping

– Semantics about objects/environment enable better
abstraction and long term interaction

2D to 3D projection of Semantics

• Typically metric-semantic maps have 2 separate layers:

–Metric: Occupancy, TSDF

–Semantics: Class label, Instance label

• Multi-view integration of semantic labels

–Majority voting: Label with highest votes for a voxel wins

–Recursive Bayesian update: Requires probabilistic
Bayesian neural networks for semantic prediction

Deep Learning based Scene Understanding

• Semantic Segmentation

– Pixel level class labeling

– No explicit object detection

– Different instances of same
class grouped together

– No foreground/background
differentiation

– Application: Geo-sensing,
autonomous driving

Figure from V7 Labs:
https://www.v7labs.com/blog/panoptic-segmentation-

guide

Deep Learning based Scene Understanding

• Instance Segmentation

– Hybrid of object detection
and semantic segmentation

– Unique instance id for two
different objects of same
class

–Mostly used for countable
foreground objects like
humans, chairs, cars

– Application: Grasping, object
tracking

Figure from V7 Labs:
https://www.v7labs.com/blog/panoptic-segmentation-

guide

Deep Learning based Scene Understanding

• Panoptic Segmentation

– Combination of semantic
and instance segmentation

– Foreground (things) with
instance ids

– Background (stuff) with no
instance ids

– Richer semantic information

– Long term object interaction

Figure from V7 Labs:
https://www.v7labs.com/blog/panoptic-segmentation-

guide

Majority Voting for Semantic Labels

• Let K be the number of classes for each semantic voxel 𝑣

• Each voxel 𝑣 maintains a vote vector 𝒄 =
𝑐1, 𝑐2, … , 𝑐𝑘 , … , 𝑐𝐾−1, 𝑐𝐾

• At time t, let measurement assign class k to the voxel 𝑣
𝒄𝒕 = 𝒄𝒕−𝟏 + 01, 02, … , 1𝑘 , … , 1𝐾−1, 1𝐾

• For conversion from vote vector to hard label for voxel 𝑣
𝑙𝑡
𝑣 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝒄𝒕)

• What happens when 2 classes have equal number of votes?

Semantic Mapping

[A. Rosinol, M. Abate, Y. Chang and L. Carlone, ICRA 2020]

Semantic Instance Volumetric Mapping

• Convolutional networks e.g. Mask RCNN, Panoptic DeepLab,
enable to label objects in RGB images

• Fuse per frame semantic information from RGB images with
geometric information from range data

Figure from “Volumetric Instance-Aware Semantic Mapping
and 3D Object Discovery ” by Grinvald et al., 2019

Visual Semantic Learning for Navigation

[P. Roth, J. Nubert, F. Yang, M. Mittal and M. Hutter, ICRA 2024]

Semantic Aware Volumetric Mapping

Pros

• Semantic rich maps

• Enables semantic based planning
and interaction

• Closer to how humans abstract
environment

Cons

• Requires large neural network
models

• Complex and expensive

Figure from “Volumetric Instance-Aware
Semantic Mapping and 3D Object Discovery ”

by Grinvald et al., 2019

Scene Graph Representation

Hierarchical Perception Layers

Raw Geometry (Point Clouds)

Metric Representation (TSDF,
Octomap)

Semantic-Metric Representation
(Semantic Maps)

Hierarchial Relationships (Scene
Graphs)

Scene Graphs

[Y. Zhu, J. Tremblay, S. Birchfield and Y. Zhu, ICRA 2021]

Scene Graph Basics

• Nodes represent objects and agents

• Edges encode spatial and semantic relations

• Structured 3D environment representation

• Enables high-level environment queries

• Incrementally updated with perception data

Example Scene Graph Generation

Source: ChatGPT

• Geometric scene graphs

–Extract centroids of instances →

vertices

–Edges represent distance between
centroids

• Semantic scene graphs

–Define dictionary of relations using
triplets <subject, object, relation>

–E.g. <pepper, stem, attached_to>

Summary

• The best model depends on the application

• Voxel representations allow for a full 3D representation

• Octrees are a compact, inherently multi-resolution,
probabilistic 3D representation

• Surface models support traversability & graspability analysis

• Signed distance functions also use 3D grids but allow for a
sub-voxel accuracy representation of the surface

• Semantic aware volumetric maps enable long term interaction

• Scene graphs are abstract models → task planning

Literature 3D World Models (1)

• Multi-Level Surface Maps for Outdoor Terrain Mapping and Loop Closing,
R. Triebel, P. Pfaff, and W. Burgard, IEEE/RSJ Int. Conf. on Int. Robots and Systems (IROS),
2006

• OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees,
A. Hornung,. K.M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, Autonomous Robots,
2013

• World Modeling
W. Burgard, M. Herbert, and M. Bennewitz, Handbook of Robotics (2nd edition), Chapter 45,
Springer, 2016.

• Real-Time Camera Tracking and 3D Reconstruction Using Signed Distance Functions,
E. Bylow, J. Sturm, C. Kerl, F. Kahl, and D. Cremers, Robotics: Science and Systems (RSS),
2013

• Real-time navigation in 3D environments based on depth camera data
D. Maier, A. Hornung and M. Bennewitz, Humanoids 2012

• Continuous Humanoid Locomotion over Uneven Terrain using Stereo Fusion,
M. F. Fallon, P. Marion, R. Deits, T. Whelan, M. Antone, J. McDonald, and R. Tedrake,
Humanoids 2015

Literature 3D World Models (2)

• Survey of 3D modeling using depth cameras
Xu, Hantong & Xu, Jiamin & Xu, Weiwei. (2019), Virtual Reality & Intelligent Hardware. 1.
483-499. 10.1016/j.vrih.2019.09.003.

• Volumetric Instance-Aware Semantic Mapping and 3D Object Discovery,
M. Grinvald, F. Furrer, T. Novkovic, J.J. Chung, C. Cadena, R. Siegwart, & J. Nieto, IEEE
Robotics and Automation Letters, 2019

• Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping
A. Rosinol, M. Abate, Y. Chang and L. Carlone, ICRA 2020

• ViPlanner: Visual Semantic Imperative Learning for Local Navigation
P. Roth, J. Nubert, F. Yang, M. Mittal and M. Hutter, ICRA 2024

• Hierarchical planning for long-horizon manipulation with geometric and symbolic scene
graph,
Y. Zhu, J. Tremblay, S. Birchfield and Y. Zhu, ICRA 2021

Acknowledgment

• Previous versions of parts of the slides have been created
by Wolfram Burgard, Cyrill Stachniss, and Jürgen Sturm

