



#### **Neural Fields**

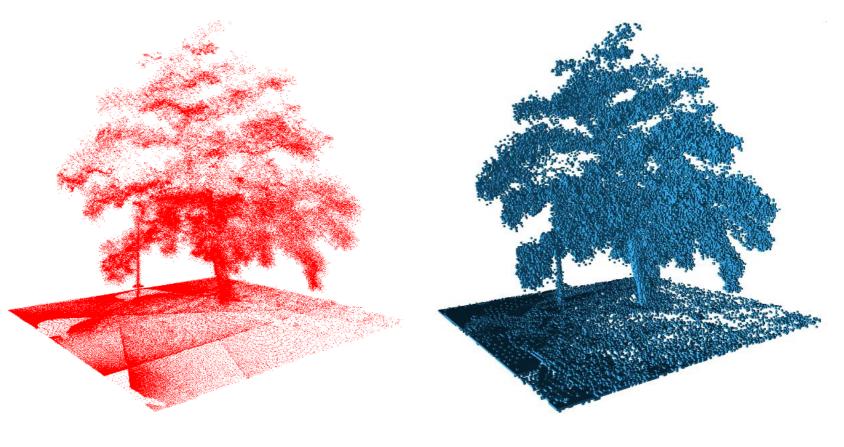
#### Maren Bennewitz, Sicong Pan Humanoid Robots Lab, University of Bonn

## **Goal of This Chapter**

- Overview of different types of neural field representations with milestones in their development
- Discuss how neural fields can be integrated into robotic systems for improved perception and scene understanding
- Learn how to implement simple differentiable rendering techniques for optimization directly from images

## **Recap of Conventional 3D Representation**

- Point clouds
- Voxel grids
- Meshes
- Distance fields



Point cloud

Voxel grid

## **Limits of Conventional 3D Representation**

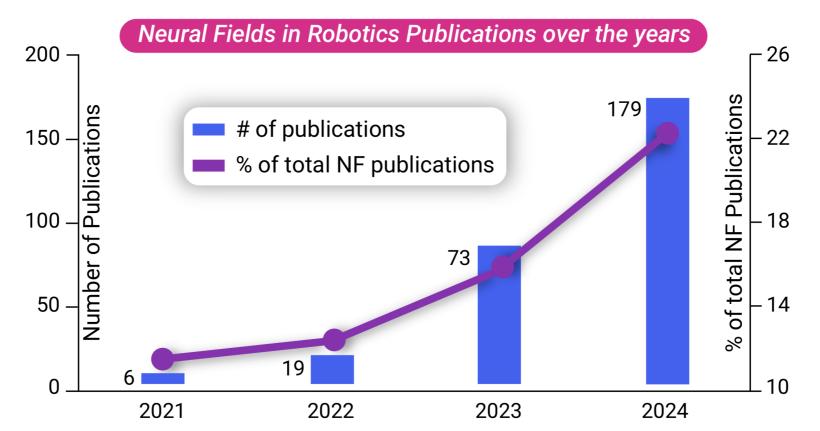
- Explicit representation often lacks detail due to resolution
- Limited continuity and smoothness
- Difficulty handling complex geometry
- High memory and storage requirements
- Often limited scalability for large and dynamic scenes

#### **Motivation**

- Achieve high-fidelity 3D reconstructions with virtually unlimited resolution
- Provide continuous and compact representations
- Learn to handle complex geometries
- Reduce memory and storage needs via efficient encoding
- Scale and generalize well to large and dynamic scenes

## **Growth of Neural Fields in Robots**

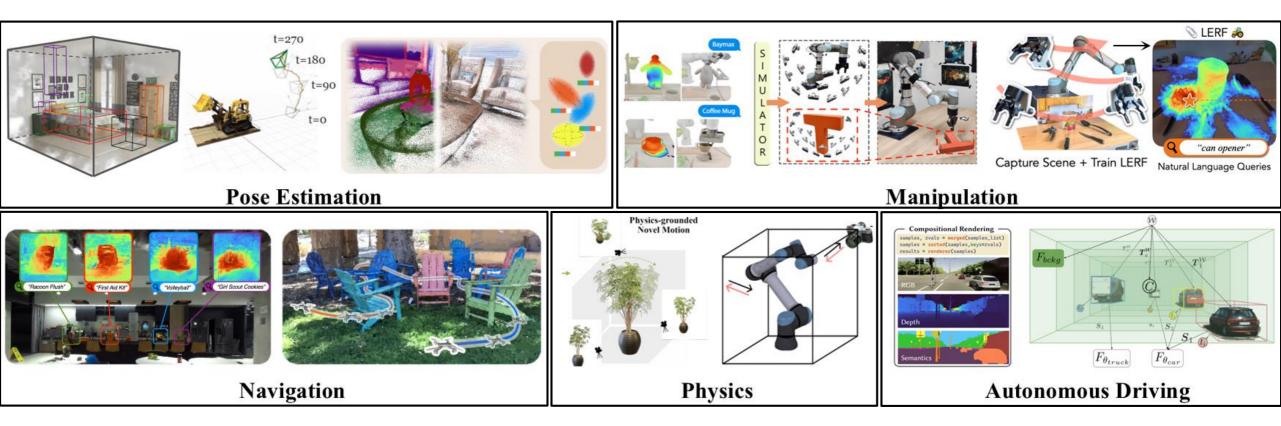
- Number of Publications: 6 to 179
- Percentage of Total Neural Field Publications: 11% to 22%



Growth of Neural Fields in Robotics, Irshad et al., ArXiv preprint, 2024

## **Robotics Applications of Neural Fields**

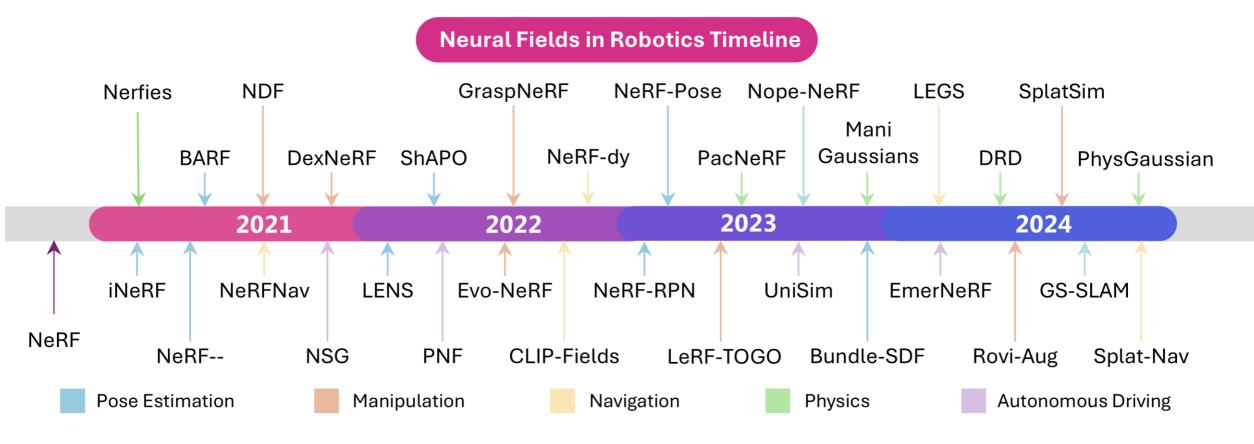
Five major robotics application areas



Overview of Robotics Applications, Irshad et al., ArXiv preprint, 2024

## **Timeline of Papers**

• Key papers divided into 5 major application areas



Timeline of Neural Fields in Robotics, Irshad et al., ArXiv preprint, 2024

# PhysGaussian (CVPR 2024)

• Physically grounded **dynamics** for novel motion synthesis







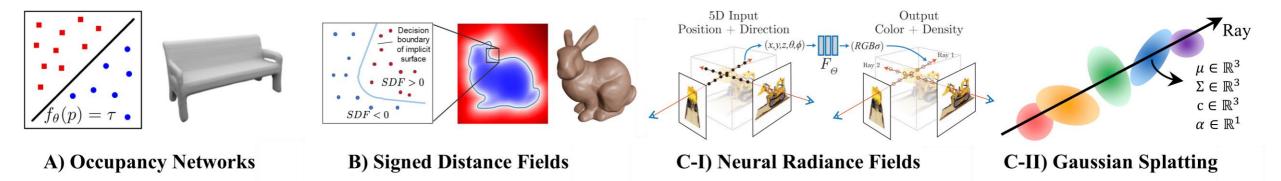
## NICER-SLAM (3DV 2024)

• Dense **RGB** SLAM and high-quality novel view synthesis



## **Neural Fields - Property**

- Four core neural field representations
  - A) Occupancy Networks vs. OctoMap
  - B) DeepSDF, NeuS vs. SDF
  - C) Neural (I, NeRF) and Explicit (II, GS) Radiance Fields



Neural Field Representations, Irshad et al., ArXiv preprint, 2024

## **Neural Fields - Input Dependency**

- View-independent fields
  - -Examples: Occupancy Networks, DeepSDF
  - -Field value: occupancy, signed distance, etc.
- View-dependent fields
  - -Examples: NeuS, NeRF, GS
  - -Field value: RGB color, density, etc. (conditioned on viewing direction)

## **Formulation of View-Independent Fields**

- Given a 3D point  $p(x, y, z) \in \mathbb{R}^3$
- A view-independent neural field defines a scalar function  $f(p): \mathbb{R}^3 \to \mathbb{R}$  that returns the field value at point p
- Field value f(p) represents a physical or geometric property, such as color, occupancy, SDF, or density
- Note: Similar to conventional 3D representations, but using a neural network as the continuous field function

#### **Occupancy Networks**

- f(p) predicts the occupancy probability indicating whether the point lies inside or outside a surface
- The key variation across occupancy-based methods lies in the network inputs (e.g., image, point cloud, voxel) and the architecture used to learn f(p)

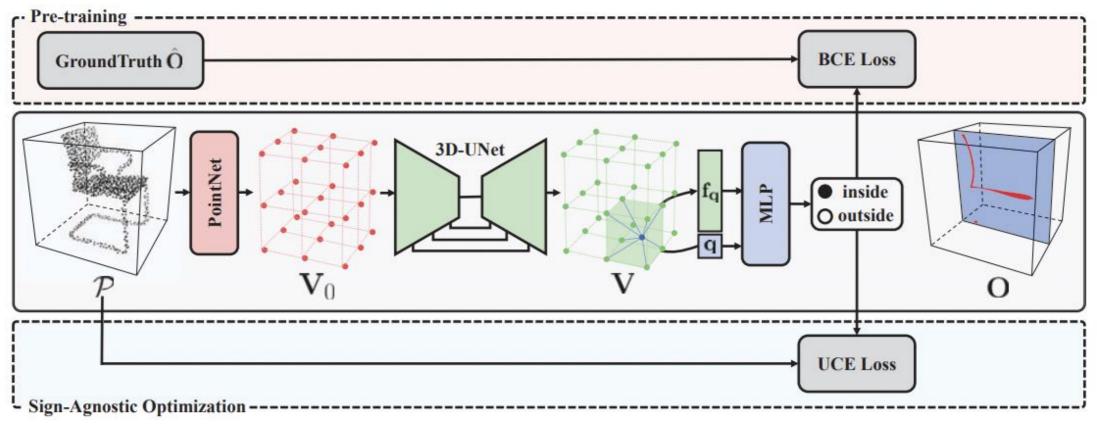




Demo results, Mescheder et al. CVPR 2019

#### **SA-ConvONet**

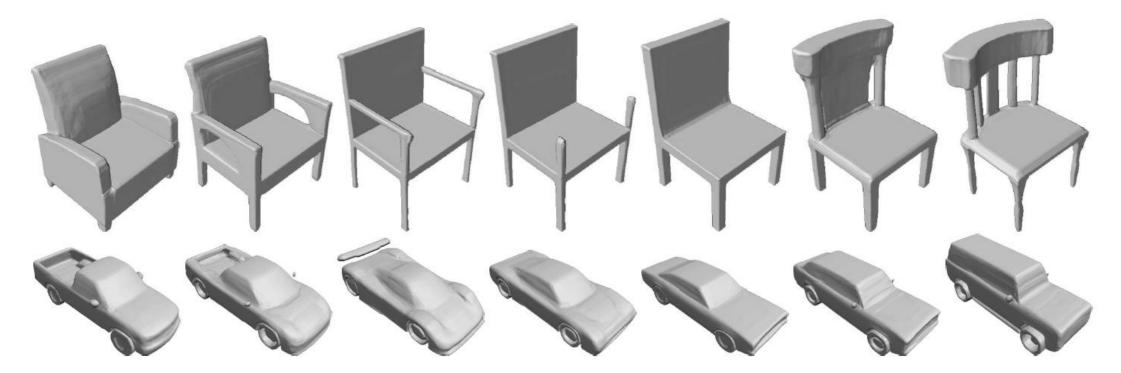
- Voxel Input
- Architecture: PointNet + 3D-UNet



SA-ConvONet, Tang et al. CVPR 2021

#### **Neural SDF**

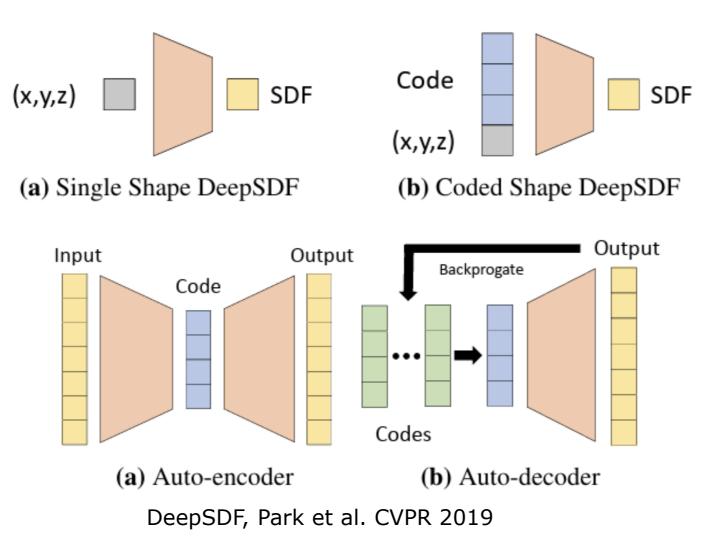
- f(p) predicts the signed distance value from the point p to its nearest surface
- The key variation still lies in the architecture



Demo results, Park et al. CVPR 2019

#### DeepSDF

Auto-encoder and auto-decoder shape DeepSDF

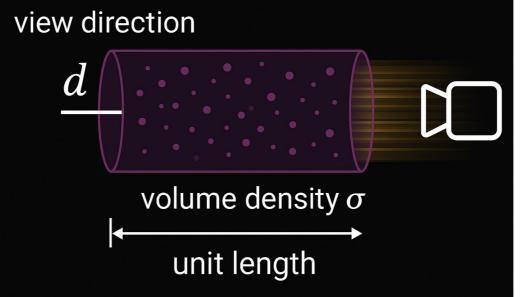


#### **From View-independent to View-dependent**

- Early neural fields focus on geometry only, such as SDF or occupancy
- These models are typically view-independent and cannot produce rendered RGB images
- Volume rendering enables projecting a 3D field into a 2D image by integrating along each pixel's viewing direction

# **Volume Rendering Theory**

- Opaque (solid) regions block light less light passes through
- Transparent or empty regions allow more light to pass
- Volume density  $\sigma$  defines how much light is absorbed per unit length
- Integration along the viewing direction determines the final image intensity



#### **Formulation of View-Dependent Fields**

- Given a 3D point  $p(x, y, z) \in \mathbb{R}^3$  and a viewing direction  $d \in \mathbb{R}^3$
- A view-dependent neural field defines a scalar or vectorvalued function  $f(p,d): \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^n$  that returns the field value at point p conditioned on the viewing direction d
- Note: Given a viewpoint 3D position  $o \in \mathbb{R}^3$ , the viewing direction is typically computed as a unit vector  $d = \frac{p-o}{||p-o||}$

## **Differentiable Volume Rendering (RGB)**

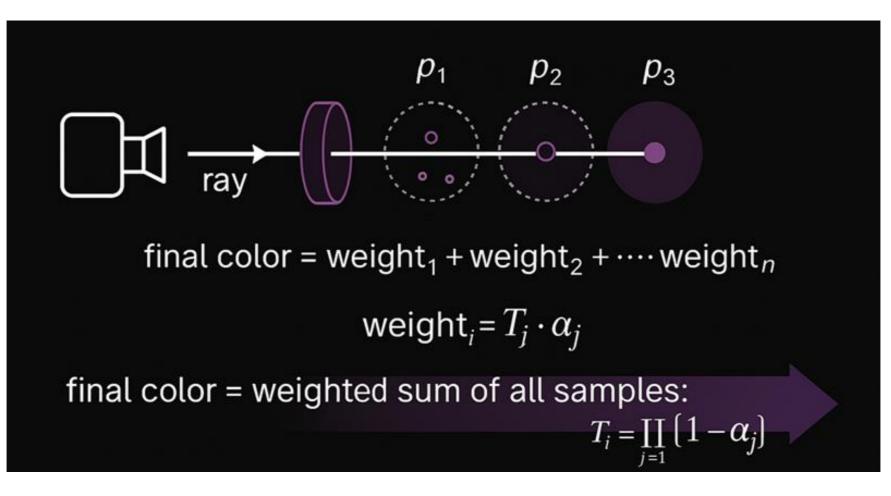
- We want to render the color of a pixel by accumulating color and transparency along a ray
- For a view-pixel ray r(t) = o + td, we sample N points  $p_i$ along the ray, where t is the step size
- At each point  $p_i$ , the neural field  $f(p,d): \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^4$  predicts  $\sigma_i$  volume density and  $c_i \in \mathbb{R}^3$  RGB color
- The final rendered pixel color  $\hat{C}$  is computed as:

$$\hat{C}(r) = \sum_{i=1}^{N} T_i * \alpha_i * c_i,$$

where  $\alpha_i = 1 - \exp(-\sigma_i(t_{i+1} - t_i))$  and  $T_i = \prod_{j=1}^{i-1}(1 - \alpha_j)$ 

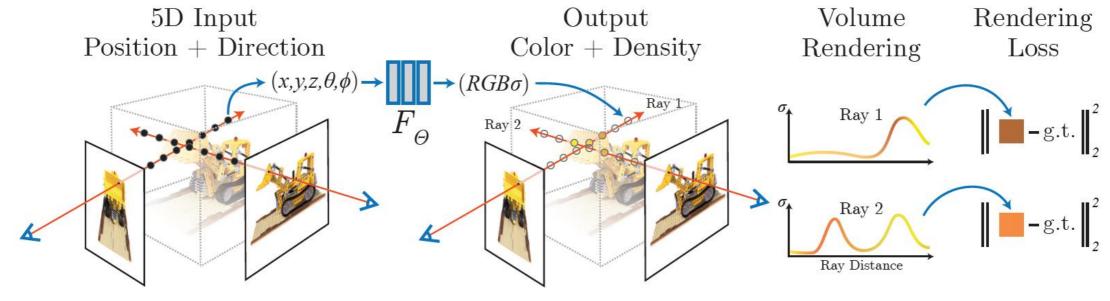
## **Visualizing Volume Rendering**

 Early opaque samples contribute more; later samples are faded by accumulated transmittance



# Neural Radiance Field (NeRF)

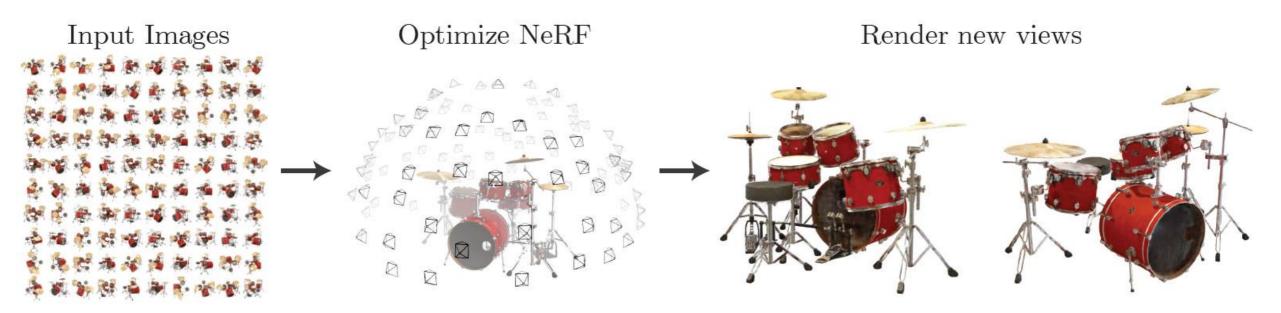
- Sampled points along each ray (as spherical coordinates S<sup>2</sup>) are passed through the network
- Final color is computed via differentiable volume rendering
- Supervised by comparing rendered pixel colors to groundtruth RGB images



NeRF, Mildenhall et al. ECCV 2020

## Neural Radiance Field (NeRF)

- Learning from a set of posed RGB images
- Unlimited resolution for novel view rendering
- Much less memory: 15GB 3D voxel grid vs. 5 MB NeRF



Practical Usage of NeRF, Mildenhall et al. ECCV 2020

## Neural Radiance Field (NeRF)

#### **NeRF:** Representing Scenes as Neural Radiance Fields for View Synthesis

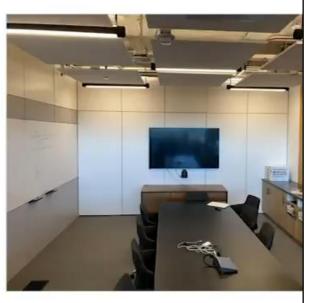
Ben Mildenhall\* UC Berkeley Pratul P. Srinivasan\* UC Berkeley Matthew Tancik\* UC Berkeley Jonathan T. Barron Google Research

Ravi Ramamoorthi UC San Diego Ren Ng UC Berkeley

\* Denotes Equal Contribution





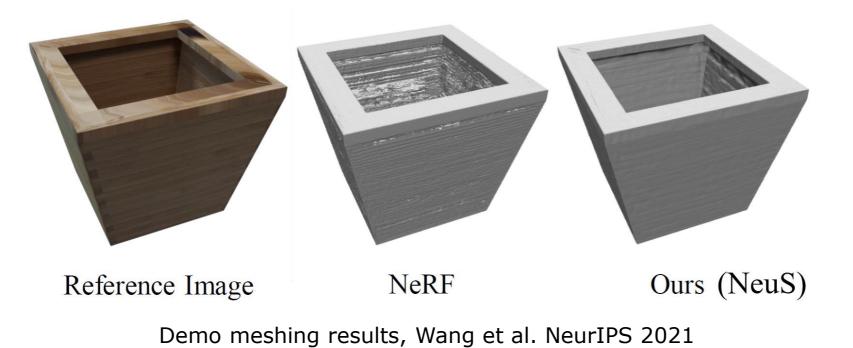


## **Building Mini NeRF via PyTorch3D**

| NeRF Component        | PyTorch & PyTorch3D API                                     | Description                                                |
|-----------------------|-------------------------------------------------------------|------------------------------------------------------------|
| Ray representation    | pytorch3d.renderer.RayBundle                                | Stores ray origins, directions,<br>and sample intervals    |
| Ray sampling          | pytorch3d.renderer.MonteCarlo<br>Raysampler                 | Samples rays for training                                  |
| Neural field $f(p,d)$ | Custom nn.Module                                            | Maps 3D point p and view direction d to RGB and density    |
| Field evaluation      | your_mlp(points, directions)                                | Forward pass through the neural network                    |
| Volume rendering      | pytorch3d.renderer.EmissionAbsorption<br>Renderer           | Composites color along the ray<br>using alpha-weighted sum |
| Renderer wrapper      | pytorch3d.renderer.ImplicitRenderer                         | Wraps ray sampling and rendering into a single module      |
| Loss function         | torch.nn.functional.mse_loss() or<br>huber (smooth-l1) loss | Computes loss between<br>rendered and ground-truth RGB     |

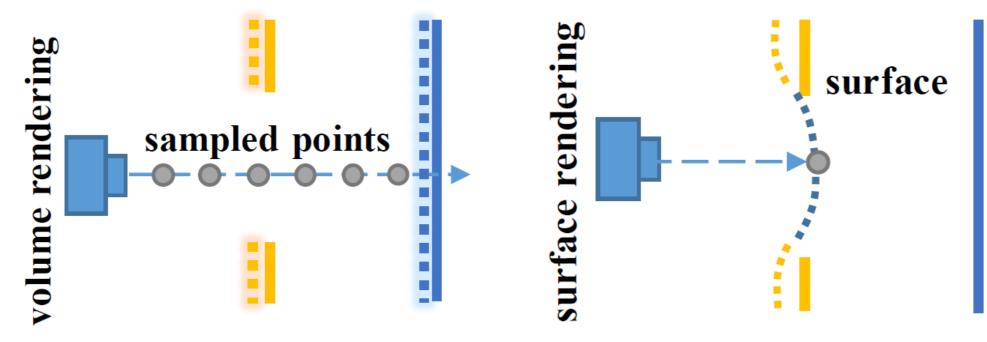
#### **SDF Meets Volume Rendering**

- Surface extraction from NeRF via marching cubes is noisy and resolution-limited
- Combining SDF with volume rendering enables photorealistic view synthesis and accurate surface reconstruction



## **Neural Implicit Surface (NeuS)**

- Two different fields:  $SDF(p): \mathbb{R}^3 \to \mathbb{R}$  and  $C(p,d): \mathbb{R}^3 \times \mathbb{S}^2 \to \mathbb{R}^3$
- NeRF struggles with color ambiguity along rays with complex geometry due to depth discontinuity (e.g. a hole)
- NeuS uses surface-aware rendering to avoid such mistakes



Volume rendering vs. Surface rendering, Wang et al. NeurIPS 2021

## Why S-density? Surfaces Smoothly Glow

- We want only the surface (i.e. SDF  $\approx$  0) to glow
- So NeuS defines a smooth function that peaks at surface and drops off nearby
- This S-density is actually the derivative of the sigmoid function (logistic):

$$\phi_s(x) = \frac{d}{dx} \mathbf{\Phi}_s(x) = \frac{se^{-sx}}{(1+e^{-sx})^2}$$

where  $\Phi_s(x) = \frac{1}{1+e^{-sx}}$ , x is SDF value, and s controls sharpness (higher s means sharper peak at surface)

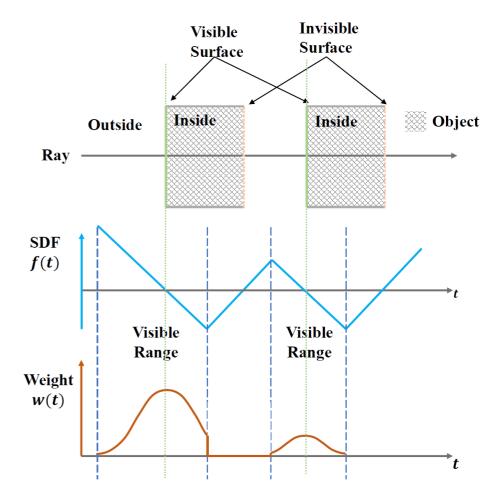
## **Surface Rendering with S-density**

 Compute color along a ray by integrating surface-based weights:

N

$$C(r) = \sum_{i=1}^{N} T_i * \phi_s(SDF(p_i)) * c_i$$
$$T_i = \prod_{j=1}^{i-1} (1 - \phi_s(SDF(p_j))) * (t_{i+1} - t_i))$$

- Here T<sub>i</sub> still means accumulated transparency as in NeRF
- Only visible surfaces glow!



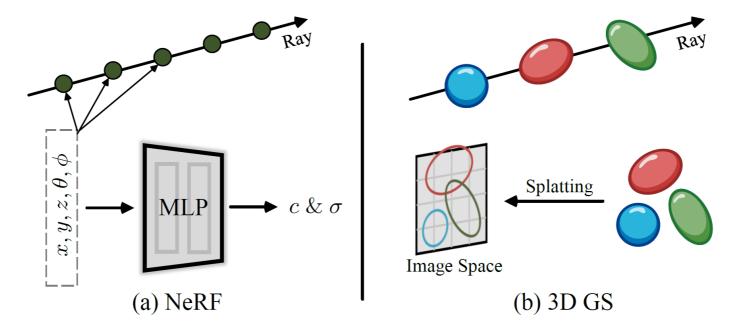
Multiple surface intersection, Wang et al. NeurIPS 2021

## Limitations of NeuS and NeRF

- Less efficient in interactive or real-time applications
- Computationally expensive (slow training and rendering)
  - –Require lots of samples along rays  $\rightarrow$  costly integration
  - -Not friendly to hardware acceleration (e.g. rasterization)

# **3D Gaussian Splatting (3DGS)**

- NeRF uses ray tracing (backward mapping): sample along rays and query an MLP
- 3DGS uses rasterization (forward mapping): project 3D Gaussians onto the image plane and splat in parallel

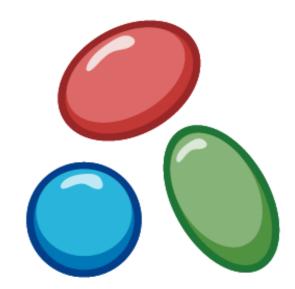


NeRF vs. 3D GS, Chen et al., ArXiv preprint, 2024

#### **3D Gaussian Representation**

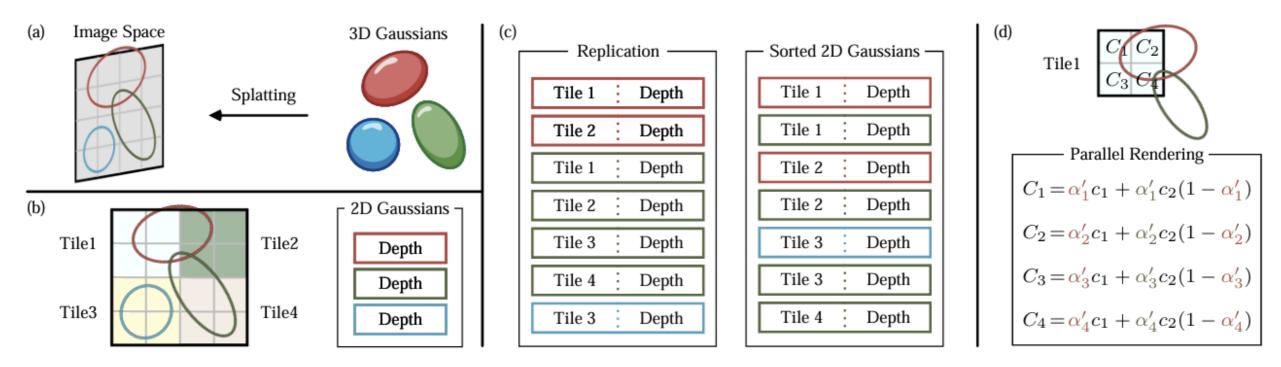
- Think of each Gaussian as a soft, elliptical point in space
- Each 3D Gaussian has position  $\mu \in \mathbb{R}^3$ , covariance  $\Sigma \in \mathbb{R}^{3 \times 3}$ (shape & orientation), color:  $c \in \mathbb{R}^3$ , and opacity  $\alpha \in [0,1]$

$$\begin{aligned} C(x) &= \sum_{i}^{i} \alpha_{i} * g_{i}(x) * c_{i} \\ g_{i}(x) &= \exp(-\frac{1}{2}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)^{\mathrm{T}}\Sigma$$



## Why 3DGS is Fast and Parallelizable

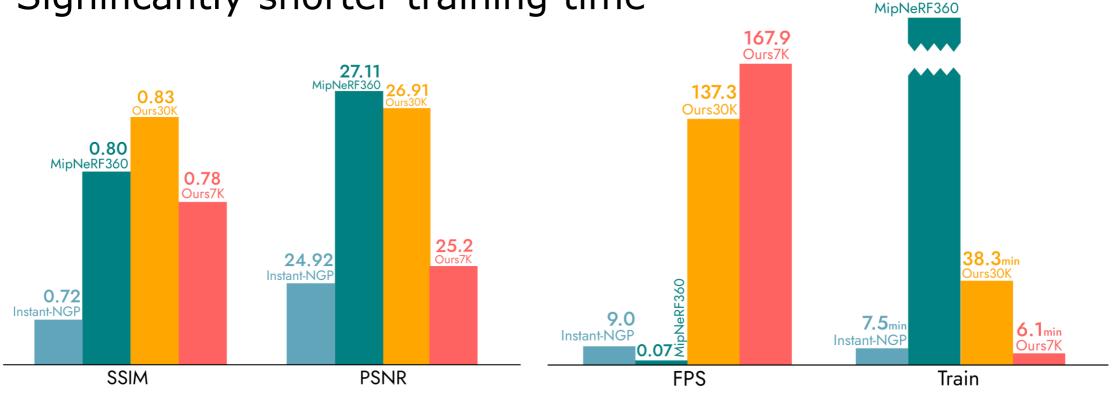
- No neural field: uses explicit 3D Gaussians instead of MLPs
- Optimize position, scale, color, and opacity directly
- Project Gaussians  $\rightarrow$  tiles  $\rightarrow$  sort by depth  $\rightarrow$  render in parallel



Forward process of 3DGS, Chen et al., ArXiv preprint, 2024

#### **Fast and Accurate 3DGS**

- Comparable or better image quality (SSIM/PSNR)
- 10x–1000x faster rendering (FPS)
- Significantly shorter training time

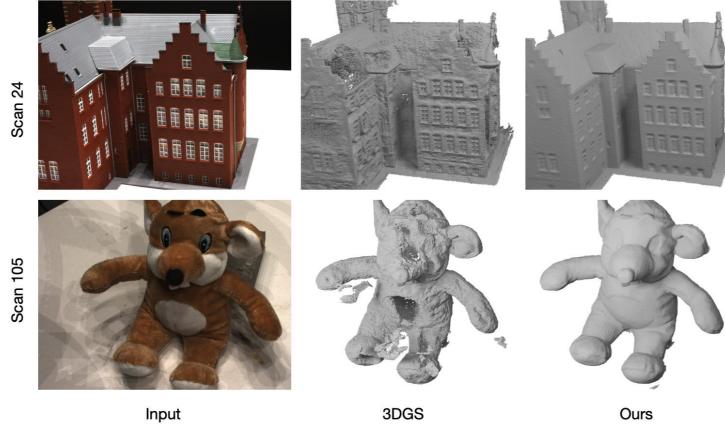


**48**h

Comparison with NeRFs, Kerbl et al., ACM Trans. Graph., 2023

# 2D Gaussian Splatting (2DGS)

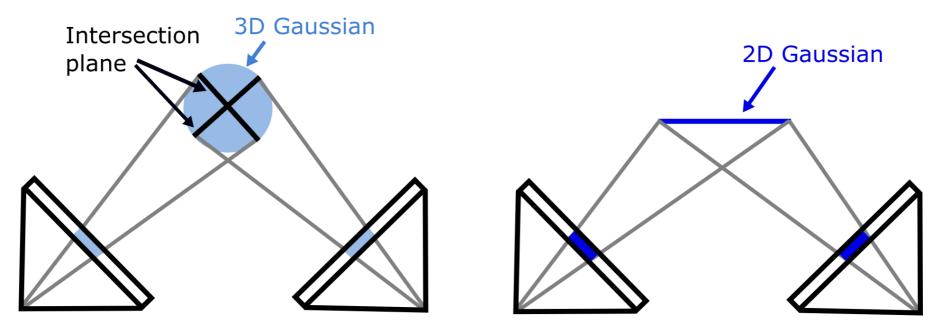
- 3DGS is fast, but lacks accurate surface geometry
- 2DGS adds mesh-aware splatting for better geometry



Demo meshing results, Huang et al., SIGGRAPH, 2024

#### **From Volumes to Planar Disks**

- Collapse each 3D Gaussian to a planar disk to the surface
- The 2D disk is oriented along the surface normal, but floats above the surface
- Extract the surface by aggregating the disks to a point cloud



Multi-view consistency, Huang et al., SIGGRAPH, 2024

## **Summary: Visual Neural Fields**

- Visual neural fields enable rich perception and interaction for robotic applications
- Traditional methods (meshes, voxels): fast but limited in detail and flexibility
- View-independent fields (occupancy networks, DeepSDF):
  fine geometry but lack realistic appearance and efficiency
- View-dependent fields (NeRF, NeuS): both fine geometry and appearance but are slow and not real-time
- Gaussian Splatting (3DGS, 2DGS): efficient, explicit fields with real-time rendering—bridging fidelity and speed

# **Beyond Vision: Tactile Sensing**

- Limitations of vision: occlusion, missing fine surface details, transparency issues
- Tactile sensing provides complementary physical feedback during interaction
- Allows direct measurements of surface geometry, texture, and force distribution
- Emerging trend: combining tactile and visual inputs via neural fields for better 3D reconstruction and material estimation

# **Integration of Vision and Tactile Data**

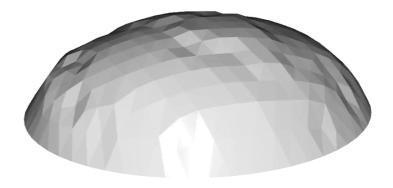
- Complementary strengths: Vision for global shape and structure
- Tactile for fine-grained details and hidden areas
- Enhanced reconstruction accuracy and robustness
- Enables richer geometric and material property extraction

#### **Punyo Visuotactile Sensor**

- Soft bubble visuotactile sensor with built-in depth sensing
- High-resolution contact geometry for robust manipulation



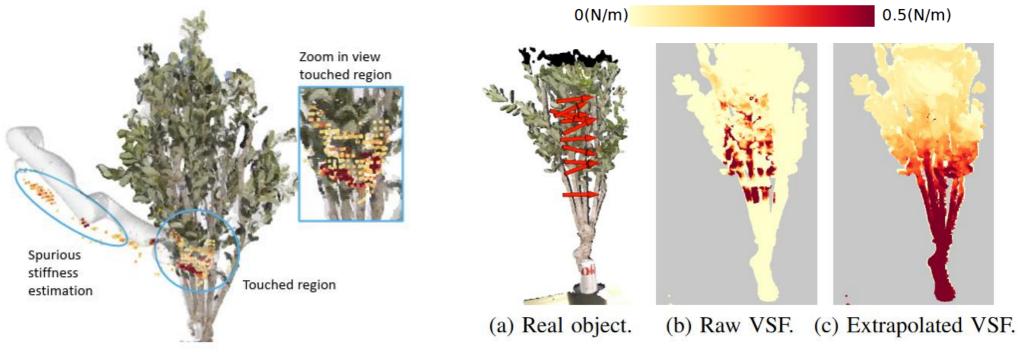




Soft bubble sensor, Alspach et al., RoboSoft, 2019

# **Volumetric Stiffness Field (VSF)**

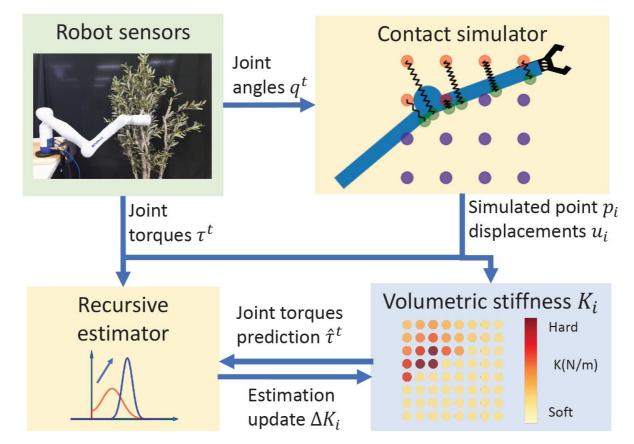
- Tactile interaction enables spatially-varying stiffness estimation from Punyo sensing
- Extrapolation yields full volumetric stiffness field from sparse touch frames



VSF results, Yao, et al., ICRA, 2023

#### **Point-Based VSF Estimation**

- Combine sensing and contact simulation to estimate stiffness
- Recursive update fuses evidence over time to refine the VSF



VSF estimation, Yao, et al., ICRA, 2023

#### **Neural VSF**

- Tactile exploration collects sparse force interaction data
- Neural field interpolates in a smooth continuous VSF

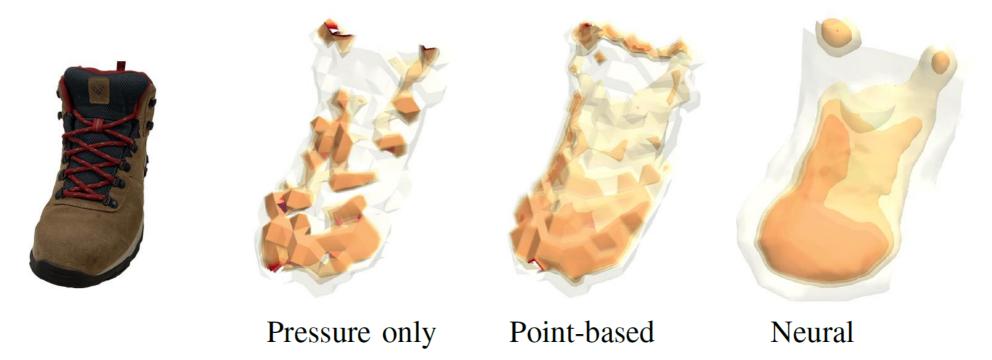




Neural VSF optimization, Han, et al., ICRA, 2025

## **Improved Estimation with Neural VSF**

- Reduce artifacts and noise in stiffness maps
- Produce smoother and more consistent field estimates than pressure-only and point-based methods



Blind localization of hidden objects, Han, et al., ICRA, 2025

## **Tactile-Based Localization under Occlusion**

- Occluded objects covered by deformable plastic
- Vision is blocked—robot relies on touch to infer object shape and position





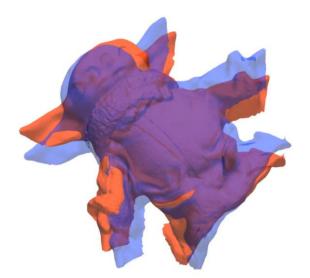
Blind localization of hidden objects, Han, et al., ICRA, 2025

# **Estimating Object Pose via Given VSF**

- Localize occluded object using only tactile stiffness field
- Match estimated VSF to reference for accurate object pose estimation







#### Reference VSF Estimated VSF

#### Localization

Blind localization of hidden objects, Han, et al., ICRA, 2025

### **Summary: Neural Fields**

- Visual neural fields: photorealistic shape & appearance (NeRF, NeuS, 3DGS)
- Tactile neural fields: material-aware sensing (VSF, contact geometry)
- Combining modalities: toward robust 3D understanding and interaction for robotics

# Literature Neural Fields (1)

- Irshad, Muhammad Zubair, et al. "Neural Fields in Robotics: A Survey." arXiv preprint arXiv:2410.20220 (2024).
- Xie, Tianyi, et al. "Physgaussian: Physics-integrated 3d gaussians for generative dynamics." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.
- Zhu, Zihan, et al. "Nicer-slam: Neural implicit scene encoding for rgb slam." 2024 International Conference on 3D Vision (3DV). IEEE, 2024.
- Mescheder, Lars, et al. "Occupancy networks: Learning 3d reconstruction in function space." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.
- Tang, Jiapeng, et al. "Sa-convonet: Sign-agnostic optimization of convolutional occupancy networks." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.

# **Literature Neural Fields (2)**

- Park, Jeong Joon, et al. "Deepsdf: Learning continuous signed distance functions for shape representation." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.
- Mildenhall, Ben, et al. "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis." European Conference on Computer Vision. 2020.
- Wang, Peng, et al. "NeuS: learning neural implicit surfaces by volume rendering for multi-view reconstruction." Proceedings of the 35th International Conference on Neural Information Processing Systems. 2021.
- Chen, Guikun, and Wenguan Wang. "A survey on 3d gaussian splatting." arXiv preprint arXiv:2401.03890 (2024).

# **Literature Neural Fields (3)**

- Kerbl, Bernhard, et al. "3d gaussian splatting for real-time radiance field rendering." ACM Trans. Graph. 42.4 (2023): 139-1.
- Huang, Binbin, et al. "2d gaussian splatting for geometrically accurate radiance fields." ACM SIGGRAPH conference papers. 2024.
- Alspach, Alex, et al. "Soft-bubble: A highly compliant dense geometry tactile sensor for robot manipulation." 2nd IEEE International Conference on Soft Robotics (RoboSoft). 2019.
- Yao, Shaoxiong, and Kris Hauser. "Estimating tactile models of heterogeneous deformable objects in real time." IEEE International Conference on Robotics and Automation (ICRA). 2023.
- Han, Jiaheng, et al. "Estimating High-Resolution Neural Stiffness Fields using Visuotactile Sensors." IEEE International Conference on Robotics and Automation (ICRA). 2025.