Neural Fields

Maren Bennewitz, Sicong Pan
Humanoid Robots Lab, University of Bonn

Goal of This Chapter

* Overview of different types of neural field representations
with milestones in their development

* Discuss how neural fields can be integrated into robotic
systems for improved perception and scene understanding

* Learn how to implement simple differentiable rendering
techniques for optimization directly from images

Recap of Conventional 3D Representation

* Point clouds

* Voxel grids

°* Meshes

* Distance fields

Point cloud Voxel grid

Limits of Conventional 3D Representation

* Explicit representation often lacks detail due to resolution
* Limited continuity and smoothness

* Difficulty handling complex geometry

* High memory and storage requirements

* Often limited scalability for large and dynamic scenes

Motivation

* Achieve high-fidelity 3D reconstructions with virtually
unlimited resolution

* Provide continuous and compact representations
* Learn to handle complex geometries

* Reduce memory and storage needs via efficient encoding
* Scale and generalize well to large and dynamic scenes

Growth of Neural Fields in Robots

* Number of Publications: 6 to 179
* Percentage of Total Neural Field Publications: 11% to 22%

200 Neural Fields in Robotics Publications over the years -

wn
c - 179 2

150 .8 mm # of publications _% | 99
S mm % of total NF publications O
5 =

100 {a- & | 18
S pa
g s
O

504 € 2lg
Z 5
5°

0 10

2021 2022 2023 2024

Growth of Neural Fields in Robotics, Irshad et al., ArXiv preprint, 2024

Robotics Applications of Neural Fields

* Five major robotics application areas

5 A
’ :‘Q" 2 Capture Scene + Train LERF Natural Language Queries
Manipulation
e -
&) ?
Navigation Physics Autonomous Driving

Overview of Robotics Applications, Irshad et al., ArXiv preprint, 2024

Timeline of Papers

* Key papers divided into 5 major application areas

Neural Fields in Robotics Timeline

Nerfies NDF GraspNeRF NeRF-Pose Nope-NeRF LEGS SplatSim
Mani
BARF DexNeRF ShAPO NeRF-dy PacNeRF = Gaussians DRD PhysGaussian
2021 2022 2023 2024
T iNeRF NeRFNav LENS Evo-NeRF NeRF-RPN UniSim EmerNeRF GS-SLAM
NeRF . :
NeRF-- NSG PNF CLIP-Fields LeRF-TOGO Bundle-SDF Rovi-Aug Splat-Nav
Pose Estimation Manipulation Navigation Physics Autonomous Driving

Timeline of Neural Fields in Robotics, Irshad et al., ArXiv preprint, 2024

PhysGaussian (CVPR 2024)

* Physically grounded dynamics for novel motion synthesis

e

zﬁ) AeroEducate” Center

NICER-SLAM (3DV 2024)
* Dense RGB SLAM and high-quality novel view synthesis

RGB Sequences

NICER-SLAM (Ours)

Neural Fields - Property

* Four core neural field representations
— A) Occupancy Networks vs. OctoMap
— B) DeepSDF, NeuS vs. SDF
— C) Neural (I, NeRF) and Explicit (II, GS) Radiance Fields

nput Output

Ray

u € R3
Y eR3
ceR3
a € R!

Lo

To(p) =7 o

A) Occupancy Networks B) Signed Distance Fields C-I) Neural Radiance Fields C-II) Gaussian Splatting

Neural Field Representations, Irshad et al., ArXiv preprint, 2024

Neural Fields - Input Dependency

* View-independent fields
—Examples: Occupancy Networks, DeepSDF
—Field value: occupancy, sighed distance, etc.
* View-dependent fields
—Examples: NeuS, NeRF, GS

—Field value: RGB color, density, etc. (conditioned on
viewing direction)

Formulation of View-Independent Fields
* Given a 3D point p(x,y,2) € R3

* A view-independent neural field defines a scalar function
f(p):R3 - R that returns the field value at point p

* Field value f(p) represents a physical or geometric property,
such as color, occupancy, SDF, or density

° Note: Similar to conventional 3D representations, but using
a neural network as the continuous field function

Occupancy Networks

° f(p) predicts the occupancy probability indicating whether
the point lies inside or outside a surface

* The key variation across occupancy-based methods lies in
the network inputs (e.g., image, point cloud, voxel) and
the architecture used to learn f(p)

Demo results, Mescheder et al. CVPR 2019

SA-ConvONet

* Voxel Input
* Architecture: PointNet + 3D-UNet

__ \
I
} { BCE Loss] i
__ ot
o & - . ° “
_ SGTp 3D-UNet P i 1 —
< g
fzé"’ Sy & | o 2T & | (@ inside
2 E O outside
\ J ® J ,» _/@—’
Vi \% O
""""""""""""""""""""""""""""""""""" (‘ “"::""““"""“““'\i
:L UCE Loss] :
I
]
J

SA-ConvONet, Tang et al. CVPR 2021

Neural SDF

* f(p) predicts the signed distance value from the point p to
its nearest surface

* The key variation still lies in the architecture

Demo results, Park et al. CVPR 2019

DeepSDF

* Auto-encoder and auto-decoder shape DeepSDF
(x,y,2)] SDF Code J | sDF
| {}[,"{,E) A
(a) Single Shape DeepSDF (b) Coded Shape DeepSDF

o

"] Codes

Input Output Output
. . Backprogate]
| 7~ Code P | P

-

e

(a) Auto-encoder (b) Auto-decoder
DeepSDF, Park et al. CVPR 2019

From View-independent to View-dependent

* Early neural fields focus on geometry only, such as SDF or
occupancy

* These models are typically view-independent and cannot
produce rendered RGB images

* Volume rendering enables projecting a 3D field into a 2D
image by integrating along each pixel’s viewing direction

Volume Rendering Theory

* Opaque (solid) regions block light — less light passes through
* Transparent or empty regions allow more light to pass

* Volume density o defines how much light is absorbed per
unit length

* Integration along the viewing direction determines the final
Image intensity

view direction

L 0

volume density o
I —

unit length

Formulation of View-Dependent Fields
* Given a 3D point p(x,y,z) € R3 and a viewing direction d € R3

* A view-dependent neural field defines a scalar or vector-
valued function f(p,d):R3 x R® -» R" that returns the field
value at point p conditioned on the viewing direction d

* Note: Given a viewpoint 3D position o € R3, the viewing
p—o0
llp—ol|

direction is typically computed as a unit vector d =

Differentiable Volume Rendering (RGB)

* We want to render the color of a pixel by accumulating color
and transparency along a ray

° For a view-pixel ray r(t) = o + td, we sample N points p;
along the ray, where t is the step size

* At each point p;, the neural field f(p,d):R3 x R® -» R* predicts
o; volume density and ¢; € R® RGB color

* The final rendered pixel color C is computed as:
N
¢ =ZTi*ai*ci,
=1

Where a; = 1— exp(—ai(tiﬂ — ti)) and Ti —] 1 — a])

Visualizing Volume Rendering

* Early opaque samples contribute more; later samples are
faded by accumulated transmittance

_’—
ray

final color = weight, + weight, +----weight,

weight;=1; - a;

final color = weighted sum of all samples:
1= I_I] e

Neural Radiance Field (NeRF)

 Sampled points along each ray (as spherical coordinates $2)
are passed through the network

* Final color is computed via differentiable volume rendering

* Supervised by comparing rendered pixel colors to ground-
truth RGB images

5D Input Output Volume Rendering

Position + Direction Color + Density Rendering Loss

xX.%.2.0, |]|]I] RGB
f (x3.2.64)—> I3 i 9) \ Ray'1 o, Ray 1 /_\ 2
\“;;,a o RQ;%@%M T || H-:t |2
A//' : “ A-//‘ < i - Ray 2 /—"\ _ |2
| / S L. ,
\ \ Ray Distance

NeRF, Mildenhall et al. ECCV 2020

Neural Radiance Field (NeRF)

* Learning from a set of posed RGB images
* Unlimited resolution for novel view rendering
* Much less memory: 15GB 3D voxel grid vs. 5 MB NeRF

Input Images Optimize NeRF Render new views
TAwARGEEaFT S
AN AT
ol ook W - O o

RN as Ve P D i
PG '? i: &> B8 ‘—': et 9 £
AR R R W R 4 e
Sl ePegated T

B A O T
BB AN A &
B EY R <

Practical Usage of NeRF, Mildenhall et al. ECCV 2020

Neural Radiance Field (NeRF)

NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis

Ben Mildenhall” Pratul P. Srinivasan® Matthew Tancik”® Jonathan T. Barron Ravi Ramamoorthi
UC Berkeley UC Berkeley UC Berkeley Google Research UC San Diego

* Denotes Equal Contribution

Ren Ng
UC Berkeley

Building Mini NeRF via PyTorch3D

NeRF Component

Ray representation
Ray sampling
Neural field f(p,d)
Field evaluation
Volume rendering
Renderer wrapper

Loss function

PyTorch & PyTorch3D API Description

Stores ray origins, directions,

pytorch3d.renderer.RayBundle and sample intervals

pytorch3d.renderer.MonteCarlo

Raysampler Samples rays for training

Maps 3D point p and view
direction d to RGB and density

Forward pass through the neural
network

Custom nn.Module

your_mlip(points, directions)

pytorch3d.renderer.EmissionAbsorption Composites color along the ray
Renderer using alpha-weighted sum

Wraps ray sampling and

pytorch3d.renderer.ImplicitRenderer rendering into a single module

torch.nn.functional.mse_loss() or Computes loss between
huber (smooth-11) loss rendered and ground-truth RGB

SDF Meets Volume Rendering

* Surface extraction from NeRF via marching cubes is noisy
and resolution-limited

* Combining SDF with volume rendering enables photorealistic
view synthesis and accurate surface reconstruction

—n

Reference Image NeRF Ours (NeuS)

Demo meshing results, Wang et al. NeurIPS 2021

Neural Implicit Surface (NeuS)

* Two different fields: SDF(p):R?> - R and C(p,d):R> x §% - R?

* NeRF struggles with color ambiguity along rays with complex
geometry due to depth discontinuity (e.g. a hole)

* NeuS uses surface-aware rendering to avoid such mistakes

. surface
>0

L
&

sampled points
—-0-0-0-0-0-0

volume rendering

=Y)
=
o —
|-
«P)
g~
=
oP)
|-
«P)
()
&
|-
-
7 /]

Volume rendering vs. Surface rendering, Wang et al. NeurIPS 2021

Why S-density? Surfaces Smoothly Glow

* We want only the surface (i.e. SDF = 0) to glow

* So NeuS defines a smooth function that peaks at surface and
drops off nearby

* This S-density is actually the derivative of the sigmoid
function (logistic):

d
¢S(x) — Eq)s(x) —

Se—sx

(1 + e=5%)?2

where &,(x) = —;, x is SDF value, and s controls sharpness
(higher s means sharper peak at surface)

Surface Rendering with S-density

Visible Invisible
* Compute color along a ray by Suface Surface
integrating surface-based weights: N\
N Outside & = I :ft::"
Ray
C(r) = Z T; * ¢ps(SDF (p;)) *
o NG LA
CHE AN
T'=1_[1— (SDF)* t: . — t: i | i | ‘
l (¢S (p]) (l+1 l)) i Vidhle : i mbl\e:/
]:1 ‘ : Range : : Range :
_ Weight i i i i
* Here T; still means accumulated O A
transparency as in NeRF ; e
° Only visible surfaces gIOWI Multiple surface intersection,

Wang et al. NeurIPS 2021

Limitations of NeuS and NeRF

* Less efficient in interactive or real-time applications

* Computationally expensive (slow training and rendering)
—Require lots of samples along rays — costly integration
—Not friendly to hardware acceleration (e.g. rasterization)

3D Gaussian Splatting (3DGS)

* NeRF uses ray tracing (backward mapping): sample along
rays and query an MLP

* 3DGS uses rasterization (forward mapping): project 3D
Gaussians onto the image plane and splat in parallel

-1

337 y’ Z? 9?¢

e

r—
I

(a) NeRF

MLP

W

—_— c & O

ﬂm

% Splatting o
0 @9

/

Image Space

(b) 3D GS

NeRF vs. 3D GS, Chen et al., ArXiv preprint, 2024

3D Gaussian Representation

* Think of each Gaussian as a soft, elliptical point in space

* Each 3D Gaussian has position u € R3, covariance I € R3*3
(shape & orientation), color: ¢ € R3, and opacity a € [0,1]

CO) =) arxgi() *c,

I

1
9i(x) = exp(=5 (x - wWIE 1 (x —w)

Why 3DGS is Fast and Parallelizable

* No neural field: uses explicit 3D Gaussians instead of MLPs

* Optimize position, scale, color, and opacity directly

* Project Gaussians — tiles — sort by depth — render in parallel

(a) Image Space 3D Gaussians
Sp]attmg
(b) - 2D Gaussians -
Tilel Tile2 Depth
Depth
Tile3 O Tiled Depth

Forward process of 3DGS, Chen et al., ArXiv preprint, 2024

(c)

Replication
Tilel - Depth
Tile2 : Depth
Tilel - Depth
Tile2 - Depth
Tile3 - Depth
Tile4 - Depth
Tile3 - Depth

— Sorted 2D Gaussians —

Tile1 - Depth
Tile1 : Depth
Tile2 - Depth
Tile2 : Depth
Tile3 - Depth
Tile3 - Depth
Tile4 - Depth

(d)

Tilel

Parallel Rendering
Ci=aole1 + ajea(l — af)

Co=0alecr + alea(l = af)
Cz=ake1 + afea(1 — af)

C4:(1’Lr_‘.1 + rv';]-‘:z(l — H"l)

Fast and Accurate 3DGS

* Comparable or better image quality (SSIM/PSNR)
* 10x-1000x faster rendering (FPS)

48

* Significantly shorter training time MigNeRF360

1675 ww

QOurs7K

27.11
MipNeRF360 » 4 o1

083 Ours30K
urs

0.80
MipNeRF360

Inst 13@8 7.Smin 6. Tmin
nstant- 0-07§— Instant-NGP Ours7K

SSIM PSNR FPS Train
Comparison with NeRFs, Kerbl et al., ACM Trans. Graph., 2023

2D Gaussian Splatting (2DGS)

* 3DGS is fast, but lacks accurate surface geometry
* 2DGS adds mesh-aware splatting for better geometry

Scan 24

Scan 105

Input 3DGS

Ours

Demo meshing results, Huang et al., SIGGRAPH, 2024

From Volumes to Planar Disks

* Collapse each 3D Gaussian to a planar disk to the surface

* The 2D disk is oriented along the surface normal, but floats
above the surface

* Extract the surface by aggregating the disks to a point cloud

Intersection -0 Gaussian _
2D Gaussian

pane; 3 ¥

Multi-view consistency, Huang et al., SIGGRAPH, 2024

Summary: Visual Neural Fields

Visual neural fields enable rich perception and interaction
for robotic applications

Traditional methods (meshes, voxels): fast but limited in
detail and flexibility

View-independent fields (occupancy networks, DeepSDF):
fine geometry but lack realistic appearance and efficiency

View-dependent fields (NeRF, NeuS): both fine geometry
and appearance but are slow and not real-time

Gaussian Splatting (3DGS, 2DGS): efficient, explicit fields
with real-time rendering—bridging fidelity and speed

Beyond Vision: Tactile Sensing

* Limitations of vision: occlusion, missing fine surface details,
transparency issues

* Tactile sensing provides complementary physical feedback
during interaction

* Allows direct measurements of surface geometry, texture,
and force distribution

* Emerging trend: combining tactile and visual inputs via
neural fields for better 3D reconstruction and material
estimation

Integration of Vision and Tactile Data

* Complementary strengths: Vision for global shape and
structure

* Tactile for fine-grained details and hidden areas
* Enhanced reconstruction accuracy and robustness
* Enables richer geometric and material property extraction

Punyo Visuotactile Sensor

* Soft bubble visuotactile sensor with built-in depth sensing
* High-resolution contact geometry for robust manipulation

Soft bubble sensor, Alspach et al., RoboSoft, 2019

Volumetric Stiffness Field (VSF)

* Tactile interaction enables spatially-varying stiffness
estimation from Punyo sensing

* Extrapolation vyields full volumetric stiffness field from
sparse touch frames

S o 5(N/m)

Zoom in view
touched region

Spurious
stiffness
estimation

(a) Real object. (b) Raw VSE. (c) Extrapolated VSE.
VSF results, Yao, et al., ICRA, 2023

Point-Based VSF Estimation

* Combine sensing and contact simulation to estimate stiffness
* Recursive update fuses evidence over time to refine the VSF

Robot sensors Contact simulator

Joint
angles qt

R 3 24 7
_ A :’j~
i}
Joint Simulated point p;
torques t* displacements u;

Recursive - Volumetric stiffness K;
estimator prediction ¢ ® I e
YY)
/ < —— 000 K(N/m)
— @
Estimation
update AK; Seft

VSF estimation, Yao, et al., ICRA, 2023

Neural VSF

* Tactile exploration collects sparse force interaction data
* Neural field interpolates in a smooth continuous VSF

Neural VSF optimization, Han, et al., ICRA, 2025

Improved Estimation with Neural VSF

* Reduce artifacts and noise in stiffness maps

* Produce smoother and more consistent field estimates
than pressure-only and point-based methods

L . & .-

¥ s
4‘; e _
/ ‘ 4 «""
i K
ﬂ \ (\. 3 . ——
Pressure only Point-based Neural

Blind localization of hidden objects, Han, et al., ICRA, 2025

Tactile-Based Localization under Occlusion

* Occluded objects covered by deformable plastic

* Vision is blocked—robot relies on touch to infer object
shape and position

Blind localization of hidden objects, Han, et al., ICRA, 2025

Estimating Object Pose via Given VSF

* Localize occluded object using only tactile stiffness field

* Match estimated VSF to reference for accurate object pose
estimation

P -

\ >

Reference VSF Estimated VSF [Localization

Blind localization of hidden objects, Han, et al., ICRA, 2025

Summary: Neural Fields

* Visual neural fields: photorealistic shape & appearance
(NeRF, NeuS, 3DGS)

* Tactile neural fields: material-aware sensing (VSF, contact
geometry)

* Combining modalities: toward robust 3D understanding and
interaction for robotics

Literature Neural Fields (1)

Irshad, Muhammad Zubair, et al. "Neural Fields in Robotics: A Survey.'
arXiv preprint arXiv:2410.20220 (2024).

Xie, Tianyi, et al. "Physgaussian: Physics-integrated 3d gaussians for
generative dynamics." Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2024.

Zhu, Zihan, et al. "Nicer-slam: Neural implicit scene encoding for rgb
slam." 2024 International Conference on 3D Vision (3DV). IEEE, 2024.

Mescheder, Lars, et al. "Occupancy networks: Learning 3d
reconstruction in function space." Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2019.

Tang, Jiapeng, et al. "Sa-convonet: Sign-agnostic optimization of
convolutional occupancy networks." Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2021.

Literature Neural Fields (2)

* Park, Jeong Joon, et al. "Deepsdf: Learning continuous signed distance
functions for shape representation." Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 20109.

* Mildenhall, Ben, et al. "NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis." European Conference on Computer Vision.
2020.

* Wang, Peng, et al. "NeuS: learning neural implicit surfaces by volume
rendering for multi-view reconstruction." Proceedings of the 35th
International Conference on Neural Information Processing Systemes.
2021.

* Chen, Guikun, and Wenguan Wang. "A survey on 3d gaussian
splatting.” arXiv preprint arXiv:2401.03890 (2024).

Literature Neural Fields (3)

Kerbl, Bernhard, et al. "3d gaussian splatting for real-time radiance
field rendering." ACM Trans. Graph. 42.4 (2023): 139-1.

Huang, Binbin, et al. "2d gaussian splatting for geometrically accurate
radiance fields." ACM SIGGRAPH conference papers. 2024.

Alspach, Alex, et al. "Soft-bubble: A highly compliant dense geometry
tactile sensor for robot manipulation.”" 2nd IEEE International
Conference on Soft Robotics (RoboSoft). 2019.

Yao, Shaoxiong, and Kris Hauser. "Estimating tactile models of
heterogeneous deformable objects in real time." IEEE International
Conference on Robotics and Automation (ICRA). 2023.

Han, Jiaheng, et al. "Estimating High-Resolution Neural Stiffness Fields
using Visuotactile Sensors." IEEE International Conference on Robotics
and Automation (ICRA). 2025.

