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Goal of This Chapter

• Overview of different types of neural field representations 
with milestones in their development

• Discuss how neural fields can be integrated into robotic 
systems for improved perception and scene understanding

• Learn how to implement simple differentiable rendering 
techniques for optimization directly from images



Recap of Conventional 3D Representation

• Point clouds

• Voxel grids

• Meshes

• Distance fields

• …

Point cloud Voxel grid



Limits of Conventional 3D Representation

• Explicit representation often lacks detail due to resolution

• Limited continuity and smoothness

• Difficulty handling complex geometry

• High memory and storage requirements

• Often limited scalability for large and dynamic scenes



Motivation

• Achieve high-fidelity 3D reconstructions with virtually 
unlimited resolution

• Provide continuous and compact representations

• Learn to handle complex geometries 

• Reduce memory and storage needs via efficient encoding

• Scale and generalize well to large and dynamic scenes



Growth of Neural Fields in Robots

• Number of Publications: 6 to 179

• Percentage of Total Neural Field Publications: 11% to 22% 

Growth of Neural Fields in Robotics, Irshad et al., ArXiv preprint, 2024    



Robotics Applications of Neural Fields

• Five major robotics application areas

Overview of Robotics Applications, Irshad et al., ArXiv preprint, 2024    



Timeline of Papers

• Key papers divided into 5 major application areas

Timeline of Neural Fields in Robotics, Irshad et al., ArXiv preprint, 2024    



PhysGaussian (CVPR 2024)

• Physically grounded dynamics for novel motion synthesis



NICER-SLAM (3DV 2024)

• Dense RGB SLAM and high-quality novel view synthesis



Neural Fields - Property 

• Four core neural field representations

– A) Occupancy Networks vs. OctoMap

– B) DeepSDF, NeuS vs. SDF

– C) Neural (I, NeRF) and Explicit (II, GS) Radiance Fields

Neural Field Representations, Irshad et al., ArXiv preprint, 2024    



Neural Fields - Input Dependency

• View-independent fields

–Examples: Occupancy Networks, DeepSDF

–Field value: occupancy, signed distance, etc.

• View-dependent fields

–Examples: NeuS, NeRF, GS

–Field value: RGB color, density, etc. (conditioned on 
viewing direction)



Formulation of View-Independent Fields

• Given a 3D point 𝑝 𝑥, 𝑦, 𝑧 ∈ ℝ3

• A view-independent neural field defines a scalar function 

𝑓 𝑝 :ℝ3 → ℝ that returns the field value at point 𝑝

• Field value 𝑓(𝑝) represents a physical or geometric property, 

such as color, occupancy, SDF, or density

• Note: Similar to conventional 3D representations, but using 

a neural network as the continuous field function



Occupancy Networks

• 𝑓 𝑝 predicts the occupancy probability indicating whether 
the point lies inside or outside a surface

• The key variation across occupancy-based methods lies in 
the network inputs (e.g., image, point cloud, voxel) and 
the architecture used to learn 𝑓 𝑝

Demo results, Mescheder et al. CVPR 2019



SA-ConvONet

• Voxel Input

• Architecture: PointNet + 3D-UNet

SA-ConvONet, Tang et al. CVPR 2021



Neural SDF

• 𝑓 𝑝 predicts the signed distance value from the point 𝑝 to 
its nearest surface

• The key variation still lies in the architecture

Demo results, Park et al. CVPR 2019



DeepSDF

• Auto-encoder and auto-decoder shape DeepSDF

DeepSDF, Park et al. CVPR 2019



From View-independent to View-dependent

• Early neural fields focus on geometry only, such as SDF or 
occupancy

• These models are typically view-independent and cannot 
produce rendered RGB images

• Volume rendering enables projecting a 3D field into a 2D 
image by integrating along each pixel’s viewing direction



Volume Rendering Theory

• Opaque (solid) regions block light — less light passes through

• Transparent or empty regions allow more light to pass

• Volume density 𝝈 defines how much light is absorbed per 
unit length

• Integration along the viewing direction determines the final 
image intensity



Formulation of View-Dependent Fields

• Given a 3D point 𝑝 𝑥, 𝑦, 𝑧 ∈ ℝ3 and a viewing direction 𝑑 ∈ ℝ3

• A view-dependent neural field defines a scalar or vector-

valued function 𝑓 𝑝, 𝑑 :ℝ3 × ℝ3 → ℝ𝑛 that returns the field 

value at point 𝑝 conditioned on the viewing direction 𝑑

• Note: Given a viewpoint 3D position 𝑜 ∈ ℝ3, the viewing 

direction is typically computed as a unit vector 𝑑 =
𝑝−𝑜

||𝑝−𝑜||



Differentiable Volume Rendering (RGB)

• We want to render the color of a pixel by accumulating color 
and transparency along a ray

• For a view-pixel ray 𝑟(𝑡) = 𝑜 + 𝑡𝑑, we sample 𝑁 points 𝑝𝑖
along the ray, where 𝑡 is the step size

• At each point 𝑝𝑖, the neural field 𝑓 𝑝, 𝑑 :ℝ3 × ℝ3 → ℝ4 predicts 
𝜎𝑖 volume density and 𝑐𝑖 ∈ ℝ3 RGB color

• The final rendered pixel color መ𝐶 is computed as:

መ𝐶 𝑟 =෍

𝑖=1

𝑁

𝑇𝑖 ∗ 𝛼𝑖 ∗ 𝑐𝑖 ,

where 𝛼𝑖 = 1 − exp(−𝜎𝑖(𝑡𝑖+1 − 𝑡𝑖)) and 𝑇𝑖 = ς𝑗=1
𝑖−1(1 − 𝛼𝑗)



Visualizing Volume Rendering

• Early opaque samples contribute more; later samples are 
faded by accumulated transmittance



Neural Radiance Field (NeRF)

• Sampled points along each ray (as spherical coordinates 𝕊2) 
are passed through the network

• Final color is computed via differentiable volume rendering

• Supervised by comparing rendered pixel colors to ground-
truth RGB images

NeRF, Mildenhall et al. ECCV 2020



Neural Radiance Field (NeRF)

• Learning from a set of posed RGB images

• Unlimited resolution for novel view rendering

• Much less memory: 15GB 3D voxel grid vs. 5 MB NeRF

Practical Usage of NeRF, Mildenhall et al. ECCV 2020



Neural Radiance Field (NeRF)



Building Mini NeRF via PyTorch3D

NeRF Component PyTorch & PyTorch3D API Description

Ray representation pytorch3d.renderer.RayBundle
Stores ray origins, directions, 

and sample intervals

Ray sampling
pytorch3d.renderer.MonteCarlo 

Raysampler
Samples rays for training

Neural field 𝑓 𝑝, 𝑑 Custom nn.Module
Maps 3D point p and view 

direction d to RGB and density

Field evaluation your_mlp(points, directions)
Forward pass through the neural 

network

Volume rendering
pytorch3d.renderer.EmissionAbsorption

Renderer
Composites color along the ray 

using alpha-weighted sum

Renderer wrapper pytorch3d.renderer.ImplicitRenderer
Wraps ray sampling and 

rendering into a single module

Loss function
torch.nn.functional.mse_loss() or 

huber (smooth-l1) loss
Computes loss between 

rendered and ground-truth RGB



SDF Meets Volume Rendering

• Surface extraction from NeRF via marching cubes is noisy 
and resolution-limited

• Combining SDF with volume rendering enables photorealistic 
view synthesis and accurate surface reconstruction

Demo meshing results, Wang et al. NeurIPS 2021



Neural Implicit Surface (NeuS)

• Two different fields: 𝑆𝐷𝐹 𝑝 :ℝ3 → ℝ and 𝐶 𝑝, 𝑑 :ℝ3 × 𝕊2 → ℝ3

• NeRF struggles with color ambiguity along rays with complex 
geometry due to depth discontinuity (e.g. a hole)

• NeuS uses surface-aware rendering to avoid such mistakes

Volume rendering vs. Surface rendering, Wang et al. NeurIPS 2021



Why S-density? Surfaces Smoothly Glow

• We want only the surface (i.e. SDF ≈ 0) to glow

• So NeuS defines a smooth function that peaks at surface and 
drops off nearby

• This S-density is actually the derivative of the sigmoid 
function (logistic):

𝜙𝑠 𝑥 =
𝑑

𝑑𝑥
𝚽𝑠 𝑥 =

𝑠𝑒−𝑠𝑥

(1 + 𝑒−𝑠𝑥)2

where 𝚽𝑠 𝑥 =
1

1+𝑒−𝑠𝑥
, 𝑥 is SDF value, and 𝑠 controls sharpness 

(higher 𝑠 means sharper peak at surface)



Surface Rendering with S-density

• Compute color along a ray by 
integrating surface-based weights:

𝐶 𝑟 =෍

𝑖=1

𝑁

𝑇𝑖 ∗ 𝜙𝑠 𝑆𝐷𝐹(𝑝𝑖) ∗ 𝑐𝑖

𝑇𝑖 =ෑ

𝑗=1

𝑖−1

(1 − 𝜙𝑠 𝑆𝐷𝐹 𝑝𝑗 ∗ (𝑡𝑖+1 − 𝑡𝑖))

• Here 𝑇𝑖 still means accumulated 
transparency as in NeRF

• Only visible surfaces glow! Multiple surface intersection, 
Wang et al. NeurIPS 2021



Limitations of NeuS and NeRF

• Less efficient in interactive or real-time applications

• Computationally expensive (slow training and rendering)

–Require lots of samples along rays → costly integration

–Not friendly to hardware acceleration (e.g. rasterization)



3D Gaussian Splatting (3DGS)

• NeRF uses ray tracing (backward mapping): sample along 
rays and query an MLP

• 3DGS uses rasterization (forward mapping): project 3D 
Gaussians onto the image plane and splat in parallel

NeRF vs. 3D GS, Chen et al., ArXiv preprint, 2024    



3D Gaussian Representation

• Think of each Gaussian as a soft, elliptical point in space

• Each 3D Gaussian has position 𝜇 ∈ ℝ3, covariance Σ ∈ ℝ3×3

(shape & orientation), color: 𝑐 ∈ ℝ3, and opacity 𝛼 ∈ [0,1]

𝐶 𝑥 =෍

𝑖

𝛼𝑖 ∗ 𝑔𝑖 𝑥 ∗ 𝑐𝑖

𝑔𝑖 𝑥 = exp(−
1

2
𝑥 − 𝜇 TΣ−1 𝑥 − 𝜇 )



Why 3DGS is Fast and Parallelizable

• No neural field: uses explicit 3D Gaussians instead of MLPs

• Optimize position, scale, color, and opacity directly

• Project Gaussians → tiles → sort by depth → render in parallel

Forward process of 3DGS, Chen et al., ArXiv preprint, 2024    



Fast and Accurate 3DGS

• Comparable or better image quality (SSIM/PSNR)

• 10x–1000x faster rendering (FPS) 

• Significantly shorter training time

Comparison with NeRFs, Kerbl et al., ACM Trans. Graph., 2023    



2D Gaussian Splatting (2DGS)

• 3DGS is fast, but lacks accurate surface geometry

• 2DGS adds mesh-aware splatting for better geometry

Demo meshing results, Huang et al., SIGGRAPH, 2024    



From Volumes to Planar Disks

• Collapse each 3D Gaussian to a planar disk to the surface

• The 2D disk is oriented along the surface normal, but floats 
above the surface

• Extract the surface by aggregating the disks to a point cloud

Multi-view consistency, Huang et al., SIGGRAPH, 2024    



Summary: Visual Neural Fields

• Visual neural fields enable rich perception and interaction 
for robotic applications

• Traditional methods (meshes, voxels): fast but limited in 
detail and flexibility

• View-independent fields (occupancy networks, DeepSDF): 
fine geometry but lack realistic appearance and efficiency

• View-dependent fields (NeRF, NeuS): both fine geometry
and appearance but are slow and not real-time

• Gaussian Splatting (3DGS, 2DGS): efficient, explicit fields 
with real-time rendering—bridging fidelity and speed



Beyond Vision: Tactile Sensing

• Limitations of vision: occlusion, missing fine surface details, 
transparency issues

• Tactile sensing provides complementary physical feedback 
during interaction

• Allows direct measurements of surface geometry, texture, 
and force distribution

• Emerging trend: combining tactile and visual inputs via 
neural fields for better 3D reconstruction and material 
estimation



Integration of Vision and Tactile Data

• Complementary strengths: Vision for global shape and 
structure

• Tactile for fine-grained details and hidden areas

• Enhanced reconstruction accuracy and robustness

• Enables richer geometric and material property extraction



Punyo Visuotactile Sensor

• Soft bubble visuotactile sensor with built-in depth sensing

• High-resolution contact geometry for robust manipulation

Soft bubble sensor, Alspach et al., RoboSoft, 2019



Volumetric Stiffness Field (VSF)

• Tactile interaction enables spatially-varying stiffness 
estimation from Punyo sensing

• Extrapolation yields full volumetric stiffness field from 
sparse touch frames

VSF results, Yao, et al., ICRA, 2023



Point-Based VSF Estimation

• Combine sensing and contact simulation to estimate stiffness

• Recursive update fuses evidence over time to refine the VSF

VSF estimation, Yao, et al., ICRA, 2023



Neural VSF

• Tactile exploration collects sparse force interaction data 

• Neural field interpolates in a smooth continuous VSF

Neural VSF optimization, Han, et al., ICRA, 2025



Improved Estimation with Neural VSF

• Reduce artifacts and noise in stiffness maps

• Produce smoother and more consistent field estimates 
than pressure-only and point-based methods

Blind localization of hidden objects, Han, et al., ICRA, 2025



Tactile-Based Localization under Occlusion

• Occluded objects covered by deformable plastic

• Vision is blocked—robot relies on touch to infer object 
shape and position

Blind localization of hidden objects, Han, et al., ICRA, 2025



Estimating Object Pose via Given VSF

• Localize occluded object using only tactile stiffness field

• Match estimated VSF to reference for accurate object pose 
estimation

Blind localization of hidden objects, Han, et al., ICRA, 2025



Summary: Neural Fields

• Visual neural fields: photorealistic shape & appearance 
(NeRF, NeuS, 3DGS)

• Tactile neural fields: material-aware sensing (VSF, contact 
geometry)

• Combining modalities: toward robust 3D understanding and 
interaction for robotics
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