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Goal of This Chapter

* Overview of different types of neural field representations
with milestones in their development

* Discuss how neural fields can be integrated into robotic
systems for improved perception and scene understanding

* Learn how to implement simple differentiable rendering
techniques for optimization directly from images



Recap of Conventional 3D Representation

* Point clouds

* Voxel grids

°* Meshes

* Distance fields

Point cloud Voxel grid



Limits of Conventional 3D Representation

* Explicit representation often lacks detail due to resolution
* Limited continuity and smoothness

* Difficulty handling complex geometry

* High memory and storage requirements

* Often limited scalability for large and dynamic scenes




Motivation

* Achieve high-fidelity 3D reconstructions with virtually
unlimited resolution

* Provide continuous and compact representations
* Learn to handle complex geometries

* Reduce memory and storage needs via efficient encoding
* Scale and generalize well to large and dynamic scenes



Growth of Neural Fields in Robots

* Number of Publications: 6 to 179
* Percentage of Total Neural Field Publications: 11% to 22%
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Growth of Neural Fields in Robotics, Irshad et al., ArXiv preprint, 2024



Robotics Applications of Neural Fields

* Five major robotics application areas
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Overview of Robotics Applications, Irshad et al., ArXiv preprint, 2024




Timeline of Papers

* Key papers divided into 5 major application areas

Neural Fields in Robotics Timeline
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Timeline of Neural Fields in Robotics, Irshad et al., ArXiv preprint, 2024



PhysGaussian (CVPR 2024)

* Physically grounded dynamics for novel motion synthesis
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NICER-SLAM (3DV 2024)
* Dense RGB SLAM and high-quality novel view synthesis

RGB Sequences

NICER-SLAM (Ours)




Neural Fields - Property

* Four core neural field representations
— A) Occupancy Networks vs. OctoMap
— B) DeepSDF, NeuS vs. SDF
— C) Neural (I, NeRF) and Explicit (II, GS) Radiance Fields
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Neural Field Representations, Irshad et al., ArXiv preprint, 2024



Neural Fields - Input Dependency

* View-independent fields
—Examples: Occupancy Networks, DeepSDF
—Field value: occupancy, sighed distance, etc.
* View-dependent fields
—Examples: NeuS, NeRF, GS

—Field value: RGB color, density, etc. (conditioned on
viewing direction)



Formulation of View-Independent Fields
* Given a 3D point p(x,y,2) € R3

* A view-independent neural field defines a scalar function
f(p):R3 - R that returns the field value at point p

* Field value f(p) represents a physical or geometric property,
such as color, occupancy, SDF, or density

° Note: Similar to conventional 3D representations, but using
a neural network as the continuous field function



Occupancy Networks

° f(p) predicts the occupancy probability indicating whether
the point lies inside or outside a surface

* The key variation across occupancy-based methods lies in
the network inputs (e.g., image, point cloud, voxel) and
the architecture used to learn f(p)

Demo results, Mescheder et al. CVPR 2019



SA-ConvONet

* Voxel Input
* Architecture: PointNet + 3D-UNet
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SA-ConvONet, Tang et al. CVPR 2021



Neural SDF

* f(p) predicts the signed distance value from the point p to
its nearest surface

* The key variation still lies in the architecture

Demo results, Park et al. CVPR 2019



DeepSDF

* Auto-encoder and auto-decoder shape DeepSDF
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DeepSDF, Park et al. CVPR 2019



From View-independent to View-dependent

* Early neural fields focus on geometry only, such as SDF or
occupancy

* These models are typically view-independent and cannot
produce rendered RGB images

* Volume rendering enables projecting a 3D field into a 2D
image by integrating along each pixel’s viewing direction



Volume Rendering Theory

* Opaque (solid) regions block light — less light passes through
* Transparent or empty regions allow more light to pass

* Volume density o defines how much light is absorbed per
unit length

* Integration along the viewing direction determines the final
Image intensity

view direction
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Formulation of View-Dependent Fields
* Given a 3D point p(x,y,z) € R3 and a viewing direction d € R3

* A view-dependent neural field defines a scalar or vector-
valued function f(p,d):R3 x R® -» R" that returns the field
value at point p conditioned on the viewing direction d

* Note: Given a viewpoint 3D position o € R3, the viewing
p—o0
llp—ol|

direction is typically computed as a unit vector d =



Differentiable Volume Rendering (RGB)

* We want to render the color of a pixel by accumulating color
and transparency along a ray

° For a view-pixel ray r(t) = o + td, we sample N points p;
along the ray, where t is the step size

* At each point p;, the neural field f(p,d):R3 x R® -» R* predicts
o; volume density and ¢; € R® RGB color

* The final rendered pixel color C is computed as:
N
¢ =ZTi*ai*ci,
=1

Where a; = 1— exp(—ai(tiﬂ — ti)) and Ti — ] 1 — a])



Visualizing Volume Rendering

* Early opaque samples contribute more; later samples are
faded by accumulated transmittance

_’—
ray

final color = weight, + weight, +----weight,

weight;=1; - a;

final color = weighted sum of all samples:
1= I_I] e




Neural Radiance Field (NeRF)

 Sampled points along each ray (as spherical coordinates $2)
are passed through the network

* Final color is computed via differentiable volume rendering

* Supervised by comparing rendered pixel colors to ground-
truth RGB images

5D Input Output Volume Rendering
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Neural Radiance Field (NeRF)

* Learning from a set of posed RGB images
* Unlimited resolution for novel view rendering
* Much less memory: 15GB 3D voxel grid vs. 5 MB NeRF
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Practical Usage of NeRF, Mildenhall et al. ECCV 2020



Neural Radiance Field (NeRF)

NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis

Ben Mildenhall” Pratul P. Srinivasan® Matthew Tancik”® Jonathan T. Barron Ravi Ramamoorthi
UC Berkeley UC Berkeley UC Berkeley Google Research UC San Diego

* Denotes Equal Contribution

Ren Ng
UC Berkeley




Building Mini NeRF via PyTorch3D

NeRF Component

Ray representation
Ray sampling
Neural field f(p,d)
Field evaluation
Volume rendering
Renderer wrapper

Loss function

PyTorch & PyTorch3D API Description

Stores ray origins, directions,

pytorch3d.renderer.RayBundle and sample intervals

pytorch3d.renderer.MonteCarlo

Raysampler Samples rays for training

Maps 3D point p and view
direction d to RGB and density

Forward pass through the neural
network

Custom nn.Module

your_mlip(points, directions)

pytorch3d.renderer.EmissionAbsorption Composites color along the ray
Renderer using alpha-weighted sum

Wraps ray sampling and

pytorch3d.renderer.ImplicitRenderer rendering into a single module

torch.nn.functional.mse_loss() or Computes loss between
huber (smooth-11) loss rendered and ground-truth RGB



SDF Meets Volume Rendering

* Surface extraction from NeRF via marching cubes is noisy
and resolution-limited

* Combining SDF with volume rendering enables photorealistic
view synthesis and accurate surface reconstruction
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Demo meshing results, Wang et al. NeurIPS 2021



Neural Implicit Surface (NeuS)

* Two different fields: SDF(p):R?> - R and C(p,d):R> x §% - R?

* NeRF struggles with color ambiguity along rays with complex
geometry due to depth discontinuity (e.g. a hole)

* NeuS uses surface-aware rendering to avoid such mistakes
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Volume rendering vs. Surface rendering, Wang et al. NeurIPS 2021



Why S-density? Surfaces Smoothly Glow

* We want only the surface (i.e. SDF = 0) to glow

* So NeuS defines a smooth function that peaks at surface and
drops off nearby

* This S-density is actually the derivative of the sigmoid
function (logistic):

d
¢S(x) — Eq)s(x) —

Se—sx

(1 + e=5%)?2

where &,(x) = —;, x is SDF value, and s controls sharpness
(higher s means sharper peak at surface)



Surface Rendering with S-density
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integrating surface-based weights: N\
N Outside & = I :ft::"
Ray
C(r) = Z T; * ¢ps(SDF (p;)) *
o NG LA
CHE AN
T'=1_[1— (SDF )* t: . — t: i | i | ‘
l ( ¢S (p]) ( l+1 l)) i Vidhle : i mbl\e:/
]:1 ‘ : Range : : Range :
_ Weight i i i i
* Here T; still means accumulated O A
transparency as in NeRF ; e
° Only visible surfaces gIOWI Multiple surface intersection,

Wang et al. NeurIPS 2021



Limitations of NeuS and NeRF

* Less efficient in interactive or real-time applications

* Computationally expensive (slow training and rendering)
—Require lots of samples along rays — costly integration
—Not friendly to hardware acceleration (e.g. rasterization)



3D Gaussian Splatting (3DGS)

* NeRF uses ray tracing (backward mapping): sample along
rays and query an MLP

* 3DGS uses rasterization (forward mapping): project 3D
Gaussians onto the image plane and splat in parallel
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NeRF vs. 3D GS, Chen et al., ArXiv preprint, 2024



3D Gaussian Representation

* Think of each Gaussian as a soft, elliptical point in space

* Each 3D Gaussian has position u € R3, covariance I € R3*3
(shape & orientation), color: ¢ € R3, and opacity a € [0,1]

CO) = ) arxgi() *c,

I

1
9i(x) = exp(=5 (x - wWIE 1 (x —w)




Why 3DGS is Fast and Parallelizable

* No neural field: uses explicit 3D Gaussians instead of MLPs

* Optimize position, scale, color, and opacity directly

* Project Gaussians — tiles — sort by depth — render in parallel

(a)  Image Space 3D Gaussians
Sp]attmg
(b) - 2D Gaussians -
Tilel Tile2 Depth
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Tile3 O Tiled Depth

Forward process of 3DGS, Chen et al., ArXiv preprint, 2024
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Fast and Accurate 3DGS

* Comparable or better image quality (SSIM/PSNR)
* 10x-1000x faster rendering (FPS)
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2D Gaussian Splatting (2DGS)

* 3DGS is fast, but lacks accurate surface geometry
* 2DGS adds mesh-aware splatting for better geometry

Scan 24

Scan 105

Input 3DGS

Ours

Demo meshing results, Huang et al., SIGGRAPH, 2024



From Volumes to Planar Disks

* Collapse each 3D Gaussian to a planar disk to the surface

* The 2D disk is oriented along the surface normal, but floats
above the surface

* Extract the surface by aggregating the disks to a point cloud

Intersection -0 Gaussian _
2D Gaussian

pane; 3 ¥

Multi-view consistency, Huang et al., SIGGRAPH, 2024



Summary: Visual Neural Fields

Visual neural fields enable rich perception and interaction
for robotic applications

Traditional methods (meshes, voxels): fast but limited in
detail and flexibility

View-independent fields (occupancy networks, DeepSDF):
fine geometry but lack realistic appearance and efficiency

View-dependent fields (NeRF, NeuS): both fine geometry
and appearance but are slow and not real-time

Gaussian Splatting (3DGS, 2DGS): efficient, explicit fields
with real-time rendering—bridging fidelity and speed



Beyond Vision: Tactile Sensing

* Limitations of vision: occlusion, missing fine surface details,
transparency issues

* Tactile sensing provides complementary physical feedback
during interaction

* Allows direct measurements of surface geometry, texture,
and force distribution

* Emerging trend: combining tactile and visual inputs via
neural fields for better 3D reconstruction and material
estimation



Integration of Vision and Tactile Data

* Complementary strengths: Vision for global shape and
structure

* Tactile for fine-grained details and hidden areas
* Enhanced reconstruction accuracy and robustness
* Enables richer geometric and material property extraction



Punyo Visuotactile Sensor

* Soft bubble visuotactile sensor with built-in depth sensing
* High-resolution contact geometry for robust manipulation

Soft bubble sensor, Alspach et al., RoboSoft, 2019



Volumetric Stiffness Field (VSF)

* Tactile interaction enables spatially-varying stiffness
estimation from Punyo sensing

* Extrapolation vyields full volumetric stiffness field from
sparse touch frames
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Zoom in view
touched region

Spurious
stiffness
estimation

(a) Real object.  (b) Raw VSE. (c) Extrapolated VSE.
VSF results, Yao, et al., ICRA, 2023



Point-Based VSF Estimation

* Combine sensing and contact simulation to estimate stiffness
* Recursive update fuses evidence over time to refine the VSF

Robot sensors Contact simulator
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VSF estimation, Yao, et al., ICRA, 2023



Neural VSF

* Tactile exploration collects sparse force interaction data
* Neural field interpolates in a smooth continuous VSF

Neural VSF optimization, Han, et al., ICRA, 2025



Improved Estimation with Neural VSF

* Reduce artifacts and noise in stiffness maps

* Produce smoother and more consistent field estimates
than pressure-only and point-based methods
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Blind localization of hidden objects, Han, et al., ICRA, 2025



Tactile-Based Localization under Occlusion

* Occluded objects covered by deformable plastic

* Vision is blocked—robot relies on touch to infer object
shape and position

Blind localization of hidden objects, Han, et al., ICRA, 2025



Estimating Object Pose via Given VSF

* Localize occluded object using only tactile stiffness field

* Match estimated VSF to reference for accurate object pose
estimation
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Blind localization of hidden objects, Han, et al., ICRA, 2025



Summary: Neural Fields

* Visual neural fields: photorealistic shape & appearance
(NeRF, NeuS, 3DGS)

* Tactile neural fields: material-aware sensing (VSF, contact
geometry)

* Combining modalities: toward robust 3D understanding and
interaction for robotics
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