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Goal of This Chapter
• Definition of active perception and its different constituents

• Understanding active exploration and perception strategies

• Overview of entropy and information gain formulations

• Introduction to active perception planning strategies

• Various active perception applications



Motivation

[Boston Dynamics, “Atlas Goes Hands On”, 2024, www.youtube.com/watch?v=F_7IPm7f1vI]

http://www.youtube.com/watch?v=F_7IPm7f1vI


Motivation
• Robots live in unstructured environments
• Human sensorimotor learning shows perception action 

coupling
• Creating environment representations requires exploration 
• Random exploration does not scale well 
–Size
–Details

• Active perception enables efficient, detailed, and full 
coverage of unknown scenes



Traditional Perception Pipeline

Acquire Sensor 
Observations

Perception  & 
Representation

Update Store Output

Take Action



Active Perception Pipeline

Acquire Sensor 
Observation

Perception &
Representation 

Update Store Output

Plan Next 
Observation 

Action
Take Action



Active Perception Definitions
• “[…] the problem of intelligent control strategies 

applied to the data acquisition process which will depend 
on the current state of data interpretation […]” (Bajcsy, 
1988)

• “An agent is an active perceiver if it knows why it wishes 
to sense, and then chooses what to perceive, and 
determines how, when, and where to achieve that 
perception.” (Bajcsy et al., 2017)



Five Main Constituents of Active Perception

[Bajcsy et al., “Revisiting Active
 Perception”, Autonomous Robots, 2017]



Five Main Constituents of Active Perception

[Bajcsy et al., “Revisiting Active
 Perception”, Autonomous Robots, 2017]



What: Scene Selection
• Fixation
–Active prediction of which part of a real-world scene to 

view to solve the task

• Sensory Field 
–Active prediction of where in a scene a stimulus relevant 

to the current task may appear, e.g., selection of the 
subset of an image

[Bajcsy et al., “Revisiting Active Perception”, Autonomous Robots, 2017]



What: Active Peduncle Localization for 
Harvesting

[Lenz et al., “Hortibot: An adaptive multi-arm system for robotic horticulture of sweet peppers“, IROS24]



Where: Viewpoint Selection
• Agent Pose
–Active selection of agent pose most appropriate for 

selecting a viewpoint most useful for current task 

• Sensor Pose
–Active selection of the pose of a sensor most 

appropriate for the current task, e.g., pointing a camera 
at a target with the best viewing angle for its recognition

[Bajcsy et al., “Revisiting Active Perception”, Autonomous Robots, 2017]



Where: Agent and Sensor Pose 

[Oßwald et al., "Efficient Coverage of 3D Environments with Humanoid Robots 
Using Inverse Reachability Maps”, Humanoids17]



How Do We Decide Where to Look or Move 
Next?
• Active perception is not just moving sensors—it's about 

making informed decisions
• We need a way to evaluate potential actions
• Core idea: How much new and useful information will be  

gained? 
• Should the robot move to pose A or pose B? 



Quantifying the Value of Perception
• Information-theoretic decision making
• Actions are chosen to reduce uncertainty/entropy
• The aim is to maximize information gain 𝑰
• Additionally, reduce cost of the action 𝑪, e.g., 
–Motion Cost
–Energy Cost

• Overall, we aim to maximize utility 𝑼

𝑈 = 𝐼 − 𝛼 ⋅ 𝐶



Information-Theoretic Entropy (Shannon 
Entropy)
• Entropy H of a random variable X is the amount of 

randomness given by 

𝐻 𝑋 = −∑𝑝 𝑥 	log	𝑝(𝑥)

• Information gain I can be calculated as 

𝐼 = 𝐻



Binary Occupancy Map Entropy Calculation
• 𝑝 𝑜𝑐𝑐 = 1, 𝑝 𝑓𝑟𝑒𝑒 = 0, 𝑝 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = 0.5

• Black = occupied, white = free, 
gray = unknown

• What is entropy of the map m?

• As occupancy states are binary, we use 
the binary entropy function

𝐻 𝑚 = −%𝑝! ∗ log" 𝑝! + 1 − 𝑝! ∗ log" 𝑝(1 − 𝑝!)



Binary Occupancy Map Entropy Calculation
• Occupied and free cells do not posses 

any new information/uncertainty
• Hence, their entropy is 0
• Only unknown cells (p=0.5) contribute 

to entropy in a binary occupancy map

• Hence, map entropy 𝐻 𝑚 = 10



Next Best View for Entropy Reduction

R

• Robot can move in N, S, W, E directions
• It can only move to free cells and 

observe the adjacent cells in all four 
directions at once

• Which is the next best view (NBV) for 
entropy reduction?

• Once a cell is viewed, it leads to unit 
information gain irrespective of whether 
it turns out to be free or occupied

robot



Next Best View for Entropy Reduction

V3

V2 V1

R

• Three potential candidates for robot 
goal pose: 

–V1: 𝐼!" =	?
–V2: 𝐼!# =	?
–V3: 𝐼!$ =	?
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Next Best View for Entropy Reduction
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• Three potential candidates for robot 
goal pose: 
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–V2: 𝐼!# = 1
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Next Best View for Entropy Reduction

V3

V2 V1

R

• Three potential candidates for robot 
goal pose: 

–V1: 𝐼!" = 1
–V2: 𝐼!# = 1
–V3: 𝐼!$ = 2



Next Best View for Information Gain

V3

V2 V1

R

• We calculated the information gain for 
the view cells V1, V2, V3 as follows

–V1: 𝐼!" = 1
–V2: 𝐼!# = 1
–V3: 𝑰𝒗𝟑 = 𝟐 most informative view

• Hence V3 is the next best view



Next Best View with Motion Cost

V3

V2 V1

R

• For pure information gain, V3 is the 
next best view

• However, this evaluation did not account 
for motion cost

• Assume 𝛼 = 0.4 and motion cost of each 
traversed cell is 1 in the utility function

𝑈 = 𝐼 − 𝛼 ⋅ 𝐶



Next Best View with Motion Cost

V3

V2 V1

R

• Assume 𝛼 = 0.4 and motion cost of each 
traversed cell is 1 in the utility function

𝑈 = 𝐼 − 𝛼 ⋅ 𝐶
• 𝑈!" = 𝐼!" − 0.4 ∗ 𝐶!"
• 𝑈!" = 1 − 0.4 ∗ 2
• 𝑈!" = 0.2



Next Best View with Motion Cost

V3

V2 V1

R

• Assume 𝛼 = 0.4 and motion cost of each 
traversed cell is 1 in the utility function

𝑈 = 𝐼 − 𝛼 ⋅ 𝐶
• 𝑈!# = 𝐼!# − 0.4 ∗ 𝐶!#
• 𝑈!# = 1 − 0.4 ∗ 3
• 𝑈!# = −0.2



Next Best View with Motion Cost

V3

V2 V1

R

• Assume 𝛼 = 0.4 and motion cost of each 
traversed cell is 1 in the utility function

𝑈 = 𝐼 − 𝛼 ⋅ 𝐶
• 𝑈!$ = 𝐼!$ − 0.4 ∗ 𝐶!$
• 𝑈!$ = 2 − 0.4 ∗ 5
• 𝑈!$ = 0.0



Next Best View with Motion Cost

V3

V2 V1

R

• As can been seen, with motion cost 
accounted for

• 𝑼𝒗𝟏 = 𝟎. 𝟐	
• 𝑈!# = −0.2	

• 𝑈!$ = 0.0 
• V1 has highest utility
• Hence, V1 is the next best view



Next Best View with Motion Cost

V3

V2 V1

R

• Without motion cost, the robot would 
have visited V3, then V1

• With motion cost considered, the robot 
visits V1, then V3

• Thus, active perception involves a 
trade-off between information gain 
from perception and cost from action 



Target and NBV Sampling
• What are informative regions?
• What are candidates for view poses?
• Consider frontier cells at the 

boundary of unknown space



Target Region Sampling
• Depends on active perception 

objective
–Active mapping
–Active object reconstruction

• Assumption for the sensor range: 
–Target cells have to be at least 2 

cells away from view cells
–Free space visibility is up to 3 

cells
• T1 and T2 are two potential but 

different kinds of target cells  

T1

T2



Free-Unknown Border Sampling
• T1 is an unknown cell at the border 

of free and unknown region
• V1 is a potential view pose for T1 T1

V1



Free-Unknown Border Sampling
• T1 is an unknown cell at the border 

of free and unknown region
• V1 is a potential view pose for T1
• If T1 is free it enables the robot to 

uncover new regions by traveling 
to T1

T1

V1



T1

Free-Unknown Border Sampling
• Suppose T1 is free
• Robot travels to T1
• It can explore new map frontiers 

by looking in 3 directions
• Useful for active exploration of 

unknown regions



Occupied-Unknown Border Sampling
• T2 is at the border between 

occupied and unknown
• V2 is a view pose for T2
• High chances T2 is also occupied

T2

V2



Occupied-Unknown Border Sampling
• If T2 occupied, it probably 

represents a wall/object surface
• Enables to create map of occupied 

regions/obstacles for navigation
• Used also for active object 

reconstruction
–Aim is to uncover occluded 

regions of target object
T2



Occupied-Unknown Border Sampling
• If T2 occupied, it probably 

represents a wall/object surface
• Enables to create map of occupied 

regions/obstacles for navigation
• Used also for active object 

reconstruction
–Aim is to uncover occluded 

regions of target object
–Next view potentially target T3

T3

T2



Active Vision for Closed-Loop Grasping

[Breyer et al., "Closed-loop next-best-view planning for target-driven grasping”, IROS22]



Binary to Continuous Maps
• In practice, we use maps with continuous occupancy 

probabilities

• s x = B
𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑, 𝑖𝑓 𝑝 𝑥 > 0.7
𝑢𝑛𝑘𝑛𝑜𝑤𝑛, 𝑖𝑓 0.3 ≤ 𝑝 𝑥 ≤ 0.7
𝑓𝑟𝑒𝑒, 𝑖𝑓 𝑝 𝑥 < 0.3

• Hence, entropy calculation is more involved



Extension to 3D
• Information gain for 3D volumetric map
• Consider sensor field of view and sensor range to estimate 

information gain of observation
• Weigh each observed voxel’s entropy by its visibility 

likelihood from candidate view
• Different metrics exist to calculate the volumetric 

information gain (VI)



Explanation for Visualization
Shown in 2D on an exemplary state of the map
• Likely occupied (black)
• Unknown (grey) 
• Likely free (green)
• Frontier voxels (striped white)
• Unknown object sides (yellow)
• View candidate (white camera)
• Sensor rays (red)
• Maximal ray length (dashed blue circle)
• VI weights (opacity of blue triangles)
[Delmerico et al., "A comparison of volumetric information gain metrics for active 3D object reconstruction”, 

Autonomous Robots, 2018]



Occlusion-Aware VI
• Consider likelihood 𝑃! of a voxel 𝑥' 

being visible from a particular view, 
instead of simply integrating entropy 
over all traversed voxels

• 𝑃! 𝑥' = ∏()"
'*"(1 − 𝑃+ 𝑥( ),

𝑤ℎ𝑒𝑟𝑒 P, x- : 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
𝑜𝑓 𝑣𝑜𝑥𝑒𝑙 x- 

• Occlusion-aware VI 
   𝐼! = 𝑃! 𝑥 𝐻(𝑥) 

[Delmerico et al., "A comparison of volumetric information gain metrics for active 3D object reconstruction”, 
Autonomous Robots, 2018]



Unobserved Voxel VI
• Remove all voxels already observed 

with a high degree of certainty

[Delmerico et al., "A comparison of volumetric information gain metrics for active 3D object reconstruction”, 
Autonomous Robots, 2018]



Rear Side Voxel VI
• For object reconstruction, consider 

unobserved voxels at the border of 
occupied regions 

• 𝑆#: unobserved voxels such that 
the next voxel on their ray is 
estimated to be occupied

[Delmerico et al., "A comparison of volumetric information gain metrics for active 3D object reconstruction”, 
Autonomous Robots, 2018]



Rear Side Voxel VI
• Combined with occlusion-aware VI:

 

𝐼' 𝑥 = 𝐼. 𝑥 ⋅ 𝐼! 𝑥

• Focuses on unknown voxels 
between sensor and occupied 
voxels 

[Delmerico et al., "A comparison of volumetric information gain metrics for active 3D object reconstruction”, 
Autonomous Robots, 2018]



Next Best View Planning with Occlusion-
Aware VI

[Menon et al., “Next Best View Planning Based on Shape Completion for Fruit Mapping and Reconstruction, IROS23]



NBV Planning: Good Enough?
• Selects the view that maximizes 

immediate entropy reduction
• Single-Step Lookahead: Decisions 

are made based solely on the next 
best candidate

• Does not account for future views or 
overlapping information

• Can lead to redundant or myopic 
decisions if similar areas are 
repeatedly chosen

Next-Best View Traversal



Submodular Information Gain
• Recognizes that additional views yield less new information 

as overlap increases
• A set function 𝑓 is submodular if it exhibits diminishing 

returns: for any sets 𝐴 ⊆ 𝐵 and any candidate view 𝑠

𝑓(A ∪ {s	})−f	(A	) ≥ 𝑓(B ∪{s	})−f	(B	)	

• Thus, the incremental benefit of adding a new view 
decreases as the set of views grows

• Overall information gain of a map via additional 
observations exhibits submodular behaviour



N-Step Greedy Planning
• Instead of single step NBV, n-step greedy planning
• Evaluate sequences of n actions to estimate cumulative 

information gain
• Compute the total expected gain over n steps and 

choose the view sequence that maximizes this sum
• Greedy selection provides strong theoretical guarantees 

with low n
• Reason: submodular property of information gain, i.e., the 

incremental benefit of an extra view diminishes as more 
views are added



Receding Horizon Planner
• Planning horizon (n steps): Compute an optimal 

sequence over n steps
• Execution window (m steps, m < n):
– Execute only the first m actions
– Replan after m steps with updated state information

• Continuous replanning: Adapt to dynamic changes and 
new observations 



Receding Horizon Planner for Active 
Perception for Mobile Manipulation

[Jauhri et al., "Active-perceptive motion generation for mobile manipulation”, ICRA24]



• Next-best view (NBV)
– Adaptive view placement 
– Suboptimal path

NBV vs. One-Shot Global Planners

Next-best view paths



• Next-best view (NBV)
– Adaptive view placement 
– Suboptimal path

• One-shot view path
– Fixed view configuration
– Globally shortest path

NBV vs. One-Shot Global Planners

Next-best view paths

One-shot view paths



Coverage Maximization
• Set Covering Optimization Problem: cover all surfaces with 

the smallest set of views

[Pan and Wei, "A global generalized maximum coverage-based solution to the non-model-based view 
planning problem for object reconstruction”, Computer Vision and Image Understanding, 2023]



Global Multi-View Planning
Active object reconstruction with NeRFs
• A small number of informative views
• Minimize robot movement cost



• Customized multi-view constraint
– NeRF representation learning is achieved by minimizing 

the photometric loss

Customized Set Covering Optimization



• Customized multi-view constraint
– NeRF representation learning is achieved by minimizing 

the photometric loss
– Cover each surface point by at least 𝛼 view

Customized Set Covering Optimization



• Customized distance constraint
– Feasible solutions of spatially clustered views with 

redundant information

Customized Set Covering Optimization



• Customized distance constraint
– Feasible solutions of spatially clustered views with 

redundant information
– Find the most spatially uniform views

Customized Set Covering Optimization



Optimization via Constrained Integer 
Linear Programming
• Minimize the total number of selected views
• Subject to multi-view and distance constraints

decision variables

multi-view constraint

distance constraint

[Pan et al., IROS24]



[Pan et al., IROS24]



Different IG Formulations
• Entropy is not the only information gain metric
• Other IG formulations are:
–TSDF reconstruction based IG
–NeRF uncertainty based IG
–Fisher mutual information
–Predicted variance for Bayesian neural networks



Active Perception for Different Objectives
• Active perception can also be used for other tasks
–Semantic mapping
–Object search
–Localization

• Also including knowledge from LLMs
• The basic principles, however, remain the same



Summary
• Active perception is needed to efficiently gain relevant 

information about the environment
• Uses the expected information gain
• Different strategies to gather information exist
• The costs of acquiring new sensor data have to be 

taken into account
• Various applications exist, e.g., mapping, object search, 

3D reconstruction etc.
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