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Goal of This Chapter
• Learn the fundamentals of robotic manipulation
• Understand the concept of kinematic chains
• Learn how to calculate forward and inverse kinematics
• Understand Denavit-Hartenberg parameters
• Understand how to use reachability maps to compute the 

robot’s kinematic capabilities 



Why Is Manipulation Needed?
• To act appropriately, robots must observe the world as 

shown in prior lectures
• However, passively observing the world is not enough
• Smart robots must integrate perception and action to 

gain relevant information and execute tasks

Hey robot, 
get me the 
tomato soup

OK, let’s 
search for it



Use Manipulation Actions to…

… look behind occluding objects … re-arrange objects

Yao et al., ICRA 2025 Paus et al., ICRA 2020



Use Manipulation Actions to…
… combine with whole-body body motion planning

Boston Dynamics: https://www.youtube.com/watch?v=-e1_QhJ1EhQ

https://www.youtube.com/watch?v=-e1_QhJ1EhQ


Recap: Transformation Basics
• Cartesian Coordinates:

One way to represent the position in 3D space

• Homogeneous Coordinates
3D point represented by a 4D vector



Recap: Transformation Basics
• Rigid body transformation in 3D can be described by a 

translation followed by a rotation

Translation
• Translation of a rigid body from A to B can be described by 

a 3D vector



Recap: Transformation Basics
• Rigid body transformation in 3D can described by a 

translation followed by a rotation

Rotation
• 3x3 matrix to represent the rotation of a rigid body in 

3D space
• Two important properties:
– 𝑅!" = 𝑅# à    𝑅 ∗ 𝑅# = 𝐼
– det 𝑅 = 1



Recap: Transformation Basics
Euler Angles
• One way to represent a general rotation of a rigid body

• The rotation is described by a chain of rotations around 
3 different axes

• We can obtain a general rotation matrix by using matrix 
multiplication 



Recap: Transformation Basics
Example: 
Using roll-pitch-yaw angles and matrix multiplication



Recap: Transformation Basics
Homogeneous Transformation Matrix
• Encodes the transformation (i.e., rotation and translation) 

of a rigid body in 4x4 matrix
• Element of SE(3)

• The inverse can be calculated as:



Kinematics
• The humanoid body is relatively complex, it has more than 

20 degrees of freedom

Neck: yaw, pitch

Elbow: pitch

Shoulder: roll, pitch

Hip: roll, pitch, yaw

Knee: pitch

Ankle: roll, pitch

x

y

z

roll

pitchyaw

NimbRo-OP, AIS, Uni Bonn



Kinematic Chains
§ Complex bodies are organized in kinematic chains of rigid 

links that are connected by joints

Leg chain

hip

knee

ankle
𝑞"

𝑞$

𝑞%

joint angle

rigid 
link

Arm chain

shoulder

elbow

wrist



Types of Kinematic Chain
§ Open kinematic chain (e.g., robotic arm)
§ Closed kinematic chain (e.g., delta robot)
§ Semi-closed kinematic chain (e.g., bimanual manipulation)

Courtesy: FanucCourtesy: Universal Robots Courtesy: Clover Lab



Kinematic Parameters
• Rigid body transformations can be described by 

translation followed by a rotation
• Each link of the kinematic chain is transformed 

relative to its parent link
• Each joint can be explained by:
– Joint parameter (i.e., rotation)
– Relative transformation to other joints

𝑃" = 𝑐𝑜𝑠𝑞" −𝑠𝑖𝑛𝑞"
𝑠𝑖𝑛𝑞" 𝑐𝑜𝑠𝑞"

𝑃& + 0
−𝑙"

𝑃" =?

𝑞"
𝑙"

0

1

𝑃& =
𝑃'&

𝑝(&



Kinematics
• Given the joint angles, what is the end-effector (EE) pose?
• Given an EE pose what are possible joint angles to reach it?

• Forward Kinematics:
• Inverse Kinematics:

𝑋 = 𝑓 𝑄
𝑄 = 𝑓!" 𝑋 𝑞" 𝑄 = 𝑞", 𝑞$

𝑞$

𝑋 = 𝑥, 𝑦
End-effector:

Joint angles:



Forward Kinematics
• Homogeneous coordinates to represent the translation 

and the rotation as a matrix multiplication
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Forward Kinematics
• Combine translation and rotation into one transformation 

matrix and use a symbolic notation

𝑃#!

𝑃$!

1
=

𝑐𝑜𝑠𝑞! −𝑠𝑖𝑛𝑞! 0
𝑠𝑖𝑛𝑞! 𝑐𝑜𝑠𝑞! 0
0 0 1

1 0 0
0 1 −𝑙!
0 0 1
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Forward Kinematics
• Now, transformations can be easily concatenated
• The order of the transformations follows the hierarchy 

along the kinematic chain

𝑞"

𝑞$

𝑙"

𝑙$

𝑃% =?

𝑃$ = 𝑇"$ 𝑞$, 𝑙$ ⋅ 𝑇&" 𝑞", 𝑙" ⋅ 𝑃&

𝑃$ = 𝑇&$ ⋅ 𝑃&
𝑃" =

𝑃#"
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Inverse Kinematics (IK)
• IK computes the joint angle values so that the end-

effector reaches a desired pose
• IK is challenging and cannot be as easily computed as FK
• There might exist several possible solutions, or there may 

be no solution at all



Inverse Kinematics (IK)
• Many different approaches to solving IK problems exist
• Analytical methods: closed-form solution 
• Numerical methods: iteratively calculate a sequence of 

configurations that approach target pose



Analytical IK Methods
• Closed-form solution (using trigonometry, geometry)
• Computes all IK solutions, determines whether or not a 

solution exists
• Once the equations are derived, solutions are very fast to 

compute
• No need to define solution parameters or initial guesses
• Often difficult to define, must be derived
• Individual equations for robots with different kinematic 

structures



Numerical IK Methods
• Given a start configuration, iteratively calculate a 

sequence of configurations to reach end-effector pose
• Use the Jacobian and try to converge to a solution
• Usually much slower but also more general



Existing Inverse Kinematics Solvers
• Analytical solvers:
– IKFast: https://github.com/rdiankov/openrave

– EAIK: https://ostermd.github.io/EAIK/

• Numerical methods:
– Kinematics and Dynamics Library (KDL)

 http://wiki.ros.org/kdl

– Robotics Toolbox
https://petercorke.github.io/robotics-toolbox-  python/IK/ik.html

https://github.com/rdiankov/openrave
https://ostermd.github.io/EAIK/
http://wiki.ros.org/kdl
https://petercorke.github.io/robotics-toolbox-python/IK/ik.html


Inverse Kinematics: Example
• Consider a simple 2D robot arm with two 1-DOF joints
• Given a desired end-effector pose 
• Compute joint angles     and 



Inverse Kinematics: Example
• If we increased  by a small amount, what would happen 

to   ?

?



Inverse Kinematics: Example
• If we increased  by a small amount, what would happen 

to   ?

?



Numerical Approach Using the Jacobian
• Jacobian matrix for this simple example would look like:

• Defines how each component of    changes w.r.t. joint angle 
changes

• For any given vector of joint values, we can compute the 
components of the Jacobian



Numerical Approach Using the Jacobian
• Usually, the Jacobian will be an 6xN matrix where N is the 

number of joints
• Jacobian can be computed based on the equations of FK



Numerical Approach Using the Jacobian
• Given a desired incremental change in the end-effector 

configuration, we can compute the corresponding 
incremental change of    :

• As   cannot be inverted in the general case, it is replaced 
by the pseudoinverse or by the transpose in practice

J∆q = ∆e

∆q = J−1∆e



Numerical Approach Using the Jacobian
• Forward kinematics is a nonlinear function 
• Thus, we have an approximation that is only valid near the 

current configuration
• Until the end-effector is close to the desired pose, repeat: 
– Compute the Jacobian  
– Take a small step towards the goal 



End-Effector Goal and Step Size
• Let    represent the current end-effector pose and    

represent its desired goal pose 
• Choose a value for       that will move closer to , 

theoretically:

• But non-linearity prevents the end-effector to reach the 
goal exactly

• Thus, to avoid oscillation, take a smaller step:



Basic Jacobian IK Algorithm

while (( -   ) > Threshold ):
  Compute            for the current configuration 
  Compute 
                        // choose a step to take

                 // compute required change in joints
                         // apply change to joints

  Compute resulting    // by FK



Denavit-Hartenberg (DH) Convention
• Goal: Reduction of joint and link describing parameters
• Approach:
–Systematic description of translation and rotation

between neighbor links
– Only 4 parameters



Denavit-Hartenberg Parameters
Describe joints via 4 DH-parameters:
• 𝑎+:	link length, or distance between two consecutive 

       z-axes, measured along the 𝑥+!"-axis
• 𝛼+:	angle between the z-axes of two consecutive joints

    measured about the 𝑥+!"-axis
• 𝑑+:	link offset, distance between two consecutive x-axes

    measured along 𝑧+-axes
• 𝜃+:	angle between two consecutive 𝑥-axes, measured about

    the 𝑧+-axis



• 𝛼+ and 𝑎+ describe the joint 
• 𝑑+ and 𝜃+ describe the connection to the next joint

Denavit-Hartenberg Parameters
Joint i-1 Joint i

Link i-1

𝑎+
𝜃+𝑑+

𝛼+

Joint i+1

Link i

…



Denavit-Hartenberg Parameters
• Simplify computation of forward and inverse kinematics by 

using homogeneous transformations to describe each 
joint’s effect to the next one

𝑇,!", =

cos 𝜃+ 	 − sin 𝜃+ ∗ cos 𝛼+ 	 sin 𝜃+ ∗ 𝑠𝑖𝑛 𝛼+ 	 𝑎+ ∗ cos(𝜃+)
sin 𝜃+ 	 cos 𝜃+ ∗ cos 𝛼+ 	 −cos 𝜃+ ∗ 𝑠𝑖𝑛 𝛼+ 	 𝑎+ ∗ 𝑠𝑖𝑛(𝜃+)

0	 𝑠𝑖𝑛 𝛼+ 	 𝑐𝑜𝑠 𝛼+ 	 𝑑+
0	 0	 0	 1

	

J. Denavit and R. S. Hartenberg, A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices, 1955



DH Example: UR5 Arm

https://www.universal-robots.com/articles/ur/application-installation/dh-parameters-for-calculations-of-kinematics-and-dynamics/

trapped%20in%20local%20minima


Capability Maps
• Measures the kinematic capabilities of a robot, 

representing its workspace under certain quality measures
• Acceleration of online motion planning, due to 

pre-calculation of the capability measures
• Common measures:
– Reachability
– Manipulability
– Robot base placeability (inverse reachability)

• Capability maps always consist of a reachability map



Reachability Map (RM)
• Constructed by systematic sampling joint configurations 

of a kinematic chain
• Example: Chain of joints between the right foot and the 

gripper link



Reachability Map (RM)
• FK to determine the corresponding voxel containing the 

end-effector pose



Reachability Map (RM)
• Configurations are added to the RM if they are statically 

stable and self-collision free
• Result: Representation of reachability, voxels contain 

configurations and corresponding quality measures
• Generating the RM is time-consuming, but needs to be 

done only once offline



Manipulability Measure
• Penalize configurations with limited maneuverability 
• Singular configurations: Certain EE movements are not 

possible, i.e., small desired changes in EE poses lead to 
large joint angle changes

• Consider: Distance to singular configurations and joint 
limits, self-distance, ...

red=low
green=high



Inversion of the RM
• Invert the precomputed reachable workspace: inverse 

reachability map (IRM)
• Invert the FK transform for each configuration to get the 

pose of the robot’s base (e.g., foot) w.r.t. the EE frame
• Determine the voxel in the IRM containing the base pose
• Store configurations and manipulability measures from the 

RM in the corresponding IRM voxels



Inverse Reachability Map (IRM)
• The IRM represents the set of potential base poses 

relative to the EE frame
• Allows for selecting an optimal base pose for a given 

grasping target
• Can be pre-computed

Cross section through 
the IRM showing 
potential feet locations 

red=low
green=high



Determining the Optimal Stance Pose 
Given a Grasp Pose
• Given a desired 6D end-effector pose with transform
• How to determine the optimal stance pose? 



Determining the Optimal Stance Pose 
Given a Grasp Pose
• Transform the IRM and determine valid configurations of 

the feet on the ground
• Align the origin of the IRM with the grasp frame           to 

get the transformed IRM
• Intersect          with the floor plane F:

• Remove unfeasible configurations from            
to get 



Determining the Optimal Stance Pose: 
Example

desired 
grasp pose

optimal stance pose

Select the optimal stance pose 
from the voxel with the highest manipulability measure

red=low
green=high



Summary (1)
• Forward kinematics compute the end-effector pose given 

joint angles along the chain
• Inverse kinematics computes the joint angles so that the 

end-effector reaches a desired goal pose
• Several approaches for IK exist (analytical/numerical)
• Basic Jacobian IK technique iteratively adapts the joint 

angles to reach the end-effector goal pose
• Denavid-Hartenberg parameters reduce the joint and link 

describing parameters



Summary (2)
• Capability maps represent “how well” the robot can interact 

with the world
• Reachability maps represent reachable end-effector poses 

using FK
• Inverse RMs used to determine the optimal base pose for a 

desired end-effector pose
• Both computed offline only once
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