Fundamentals of Manipulation

Maren Bennewitz, Nils Dengler
Humanoid Robots Lab, University of Bonn

Goal of This Chapter

Learn the fundamentals of robotic manipulation
Understand the concept of kinematic chains

Learn how to calculate forward and inverse kinematics
Understand Denavit-Hartenberg parameters

Understand how to use reachability maps to compute the
robot’s kinematic capabilities

Why Is Manipulation Needed?

* To act appropriately, robots must observe the world as
shown in prior lectures

* However, passively observing the world is not enough

* Smart robots must integrate perception and action to
gain relevant information and execute tasks

OK, let’s
search for it

Hey robot,
get me the
tomato soup

Use Manipulation Actions to...

... look behind occluding objects ... re-arrange objects

Yao et al., ICRA 2025 Paus et al., ICRA 2020

Use Manipulation Actions to...

... combine with whole-body body motion planning
] / , ’i ' n 3 -

Boston Dynamics: https://www.youtube.com/watch?v=-el QhJ1EhQ

https://www.youtube.com/watch?v=-e1_QhJ1EhQ

Recap: Transformation Basics

* Cartesian Coordinates:

One way to represent the position in 3D space z
px

p - py]

Pz

* Homogeneous Coordinates
3D point represented by a 4D vector

px
p=|Py

Pz
1.

Recap: Transformation Basics

* Rigid body transformation in 3D can be described by a
translation followed by a rotation

Translation
* Translation of a rigid body from A to B can be described by

a 3D vector

Px
Tap = |Py

Pz

Recap: Transformation Basics

* Rigid body transformation in 3D can described by a
translation followed by a rotation

Rotation

* 3x3 matrix to represent the rotation of a rigid body in
3D space

°* Two important properties:
—R'=R"' > R+R"' =1
—det(R) =1

Recap: Transformation Basics

Euler Angles
* One way to represent a general rotation of a rigid body

* The rotation is described by a chain of rotations around
3 different axes

* We can obtain a general rotation matrix by using matrix
multiplication

Recap: Transformation Basics

Example:
Using roll-pitch-yaw angles and matrix multiplication

CDyaW
R = R,(6,) R, (6,) Rx(65) @/\9\
cos(8,) —sin(8,) 07| cos(@y) 0 sin(6y)]|r1 0 0
R =|sin(6,) cos(8;,) O 0 1 0 [0 cos(6y) —sin(Hx)‘
0 0 11 [—sin(6y) 0 cos(6,)|L0 sin(6y) cos(6y)

Recap: Transformation Basics

Homogeneous Transformation Matrix

* Encodes the transformation (i.e., rotation and translation)
of a rigid body in 4x4 matrix

* Element of SE(3)

Px

_ | [R]l3x3 Py _[R P
= 8 | I T_[o 1
0 0 O 1 |

T __pT
* The inverse can be calculated as: T7'= [}i) R1 P]

Kinematics

* The humanoid body is relatively complex, it has more than
20 degrees of freedom

. Neck: yaw, pitch

Z
A ‘ g
Shoulder: roll, pitch
“D pitch / I \
-8 \ Elbow: pitch
y lui W s

Hip: roll, pitch, yaw

X T Knee: pitch
Ankle: roll, pitch

NimbRo-OP, AIS, Uni Bonn

roll

Kinematic Chains

« Complex bodies are organized in kinematic chains of rigid
links that are connected by joints

Leg chain Arm chain
hip shoulder
| |
knee elbow
! q !
ankle joint angle S wrist
q>
rigid ~
link

ds

Types of Kinematic Chain

« Open kinematic chain (e.g., robotic arm)
» Closed kinematic chain (e.g., delta robot)
« Semi-closed kinematic chain (e.g., bimanual manipulation)

Kinematic Parameters

* Rigid body transformations can be described by
translation followed by a rotation

* Each link of the kinematic chain is transformed
relative to its parent link

* Each joint can be explained by:
— Joint parameter (i.e., rotation)
— Relative transformation to other joints

el ()
sinq, €0sqy -1

Kinematics

* Given the joint angles, what is the end-effector (EE) pose?
* Given an EE pose what are possible joint angles to reach it?

* Forward Kinematics: x = 7(0)
* Inverse Kinematics: Q0 =f"1(X)

H

q

“ Joint angles:

o Q = (q1,92)

)

. —— End-effector:

X =(x,y)

Forward Kinematics

* Homogeneous coordinates to represent the translation
and the rotation as a matrix multiplication

P} P!
P’ = (po| P'=|P}

1 1

e e [4) o

sinq, co0sqq -1 l
1

Pl cosq; —sing; O1[1 0 0 [P d1

Py1 =l 0] [0 1 _lll P39

sinq, €0Sqq
1 0 0 1t 0 1 1

Forward Kinematics

« Combine translation and rotation into one transformation
matrix and use a symbolic notation

P* =R(qy) - t(ly) - P°

P} [COSC[l —sing O] [1 0 O

P2
Py
1

P} sinqu cosq; 0|0 1 -
1] Lo o lo o 1
Pl [cosq, —sing, lisingy 1[P2
P = [sinql cosq; —licosqq||P?
1] 0 0 1 1

To
Pl = Tl/ l,) - P°
— O(qlr 1)

From

Forward Kinematics

* Now, transformations can be easily concatenated

° The order of the transformations follows the hierarchy
along the kinematic chain

P2 = T2(q,, 1) - To (g, Ly) - P° T P =[]
P2 = Toz y PO

A p? =?

Inverse Kinematics (IK)

* IK computes the joint angle values so that the end-
effector reaches a desired pose

* IK is challenging and cannot be as easily computed as FK

* There might exist several possible solutions, or there may
be no solution at all

Inverse Kinematics (IK)

* Many different approaches to solving IK problems exist
* Analytical methods: closed-form solution

° Numerical methods: iteratively calculate a sequence of
configurations that approach target pose

Analytical IK Methods

Closed-form solution (using trigonometry, geometry)

Computes all IK solutions, determines whether or not a
solution exists

Once the equations are derived, solutions are very fast to
compute

No need to define solution parameters or initial guesses
Often difficult to define, must be derived

Individual equations for robots with different kinematic
structures

Numerical IK Methods

* Given a start configuration, iteratively calculate a
sequence of configurations to reach end-effector pose

* Use the Jacobian and try to converge to a solution
* Usually much slower but also more general

Existing Inverse Kinematics Solvers

° Analytical solvers:
— IKFast: https://qgithub.com/rdiankov/openrave
— EAIK: https://ostermd.qgithub.io/EAIK/

* Numerical methods:

— Kinematics and Dynamics Library (KDL)
http://wiki.ros.org/kdl

— Robotics Toolbox
https://petercorke.qgithub.io/robotics-toolbox- python/IK/ik.html

https://github.com/rdiankov/openrave
https://ostermd.github.io/EAIK/
http://wiki.ros.org/kdl
https://petercorke.github.io/robotics-toolbox-python/IK/ik.html

Inverse Kinematics: Example

* Consider a simple 2D robot arm with two 1-DOF joints
* Given a desired end-effector pose e
* Compute joint angles g1 and g2

Inverse Kinematics: Example

* If we increased ¢1 by a small amount, what would happen
toe?

'\?

e = (e, €ey)

‘.Q1

Inverse Kinematics: Example

* If we increased ¢1 by a small amount, what would happen
toe?

Numerical Approach Using the Jacobian
* Jacobian matrix for this simple example would look like:

aeaj aex
dq1 9Oqo
8€y 8€y
dq1 9Ogo

J(e,q) =

* Defines how each component of € changes w.r.t. joint angle
changes

* For any given vector of joint values, we can compute the
components of the Jacobian

Numerical Approach Using the Jacobian

* Usually, the Jacobian will be an 6xN matrix where N is the
number of joints

* Jacobian can be computed based on the equations of FK

oey o oey
dqo 9qs \
Oey Oey
o e
oe,, Oe,,
i o0
J(ev q) — ey dey
dq0 Ogs
Oeg Oeg
Fer Fer

86170 L 8€¢
\3(10 3%)

Numerical Approach Using the Jacobian

* Given a desired incremental change in the end-effector
configuration, we can compute the corresponding
incremental change of q :

JAq = Ae
Aq=J 1Ae

* As Jcannot be inverted in the general case, it is replaced
by the pseudoinverse or by the transpose in practice

Numerical Approach Using the Jacobian

* Forward kinematics is a nonlinear function

°* Thus, we have an approximation that is only valid near the
current configuration

* Until the end-effector is close to the desired pose, repeat:
— Compute the Jacobian
— Take a small step towards the goal

End-Effector Goal and Step Size
* Let € represent the current end-effector pose and g
represent its desired goal pose

* Choose a value for Ae that will move e closer to g,

theoretically:
Ae=g —e

* But non-linearity prevents the end-effector to reach the
goal exactly

* Thus, to avoid oscillation, take a smaller step:
Ae=a(g—e),0<a<l

Basic Jacobian IK Algorithm

while ((€-€e) > Threshold):
Compute J(e,q) for the current configuration q

Compute J—!

Ae = a(g — e) // choose a step to take
Aq=J1Ae // compute required change in joints
q=9q+ Aq // apply change to joints

Compute resulting € // by FK

Denavit-Hartenberg (DH) Convention

* Goal: Reduction of joint and link describing parameters
* Approach:

—Systematic description of translation and rotation
between neighbor links

— Only 4 parameters

Denavit-Hartenberg Parameters

Describe joints via 4 DH-parameters:

* a;:link length, or distance between two consecutive
z-axes, measured along the x;_,-axis

* a;: angle between the z-axes of two consecutive joints
measured about the x;_,-axis

* d;: link offset, distance between two consecutive x-axes
measured along z;-axes

* §;: angle between two consecutive x-axes, measured about
the z;-axis

Denavit-Hartenberg Parameters

Joint i-1 Joint i Joint i+1

Link i-1 Link i

° a; and q; describe the joint
* d; and 6; describe the connection to the next joint

Denavit-Hartenberg Parameters

* Simplify computation of forward and inverse kinematics by
using homogeneous transformations to describe each
joint’s effect to the next one

‘cos(6;) —sin(6;) * cos(a;) sin(f;) = sin(a;) a; * cos(6;)]
n _|sin(8;) cos(6;) = cos(a;) —cos(6;) = sin(a;) a; * sin(6;)
Thoq = .
0 sin(a;) cos(a;) d;
0 0 0 1

J. Denavit and R. S. Hartenberg, A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices, 1955

DH Example: UR5 Arm

I ~d15]

Link/

‘: X

(4]

URS 3
Kinematics [theta [rad] |a [m] d [m] alpha [rad] |
Joint 1 0 0 0.089159 |n/2 |

Joint2 |0 0425 |0 0]

Joint 3 0 -0.39225|0 0 \
Joint 4 0 0 0.10915 /2 —_—
Joint 5 0 0 0.09465 [1/2 "
Joint 6 0 0 0.0823 |0 2 !

e 2
https://www.universal-robots.com/articles/ur/application-installation/dh-parameters-for-calculations-of-kinematics-and-dynamics/

trapped%20in%20local%20minima

Capability Maps
* Measures the kinematic capabilities of a robot,
representing its workspace under certain quality measures

* Acceleration of online motion planning, due to
pre-calculation of the capability measures

e Common measures:
— Reachability
— Manipulability
— Robot base placeability (inverse reachability)
* Capability maps always consist of a reachability map

Reachability Map (RM)

* Constructed by systematic sampling joint configurations
of a kinematic chain

* Example: Chain of joints between the right foot and the
gripper link

Reachability Map (RM)

* FK to determine the corresponding voxel containing the
end-effector pose

Reachability Map (RM)

* Configurations are added to the RM if they are statically
stable and self-collision free

* Result: Representation of reachability, voxels contain
configurations and corresponding quality measures

° Generating the RM is time-consuming, but needs to be
done only once offline

Manipulability Measure

* Penalize configurations with limited maneuverability

* Singular configurations: Certain EE movements are not
possible, i.e., small desired changes in EE poses lead to
large joint angle changes

* Consider: Distance to singular configurations and joint
limits, self-distance, ... 2

red=Ilow
green=high

Inversion of the RM

Invert the precomputed reachable workspace: inverse
reachability map (IRM)

Invert the FK transform for each configuration to get the
pose of the robot’s base (e.g., foot) w.r.t. the EE frame

Determine the voxel in the IRM containing the base pose

Store configurations and manipulability measures from the
RM in the corresponding IRM voxels

Inverse Reachability Map (IRM)

° The IRM represents the set of potential base poses
relative to the EE frame

* Allows for selecting an optimal base pose for a glven
grasping target :

* Can be pre-computed

red=low
green=high

Cross section through
the IRM showing
potential feet locations

Determining the Optimal Stance Pose
Given a Grasp Pose

* Given a desired 6D end-effector pose with transform F .,
°* How to determine the optimal stance pose?

Determining the Optimal Stance Pose
Given a Grasp Pose

* Transform the IRM and determine valid configurations of
the feet on the ground

* Align the origin of the IRM with the grasp frame F .., to
get the transformed IRM tIRM

* Intersect tIRM with the floor plane F:
IRMaoor = tIRM N F

* Remove unfeasible configurations from IRMgq,,
tO get [RMstcmce

Determining the Optimal Stance Pose:
Example

desired
grasp pose

red=low . , & J (25
green=high <& =~

Select the optimal stance pose
from the voxel with the highest manipulability measure

Summary (1)

* Forward kinematics compute the end-effector pose given
joint angles along the chain

* Inverse kinematics computes the joint angles so that the
end-effector reaches a desired goal pose

* Several approaches for IK exist (analytical/numerical)

* Basic Jacobian IK technique iteratively adapts the joint
angles to reach the end-effector goal pose

* Denavid-Hartenberg parameters reduce the joint and link
describing parameters

Summary (2)

* Capability maps represent “how well” the robot can interact
with the world

* Reachability maps represent reachable end-effector poses
using FK

* Inverse RMs used to determine the optimal base pose for a
desired end-effector pose

* Both computed offline only once

Literature

Introduction to Inverse Kinematics with Jacobian

Transpose, Pseudoinverse and Damped Least methods
S.R. Buss, University of California, 2009

Introduction to Robotics: Mechanics and Control
John J. Craig, Pearson Prentice Hall, 2005

Stance Selection for Humanoid Grasping Tasks by Inverse

Reachability Maps
F. Burget and M. Bennewitz,

Proc. of the IEEE International Conference on Robotics & Automation
(ICRA), 2015

