
Fundamentals of Manipulation

Maren Bennewitz, Nils Dengler
Humanoid Robots Lab, University of Bonn

Goal of This Chapter
• Learn the fundamentals of robotic manipulation
• Understand the concept of kinematic chains
• Learn how to calculate forward and inverse kinematics
• Understand Denavit-Hartenberg parameters
• Understand how to use reachability maps to compute the

robot’s kinematic capabilities

Why Is Manipulation Needed?
• To act appropriately, robots must observe the world as

shown in prior lectures
• However, passively observing the world is not enough
• Smart robots must integrate perception and action to

gain relevant information and execute tasks

Hey robot,
get me the
tomato soup

OK, let’s
search for it

Use Manipulation Actions to…

… look behind occluding objects … re-arrange objects

Yao et al., ICRA 2025 Paus et al., ICRA 2020

Use Manipulation Actions to…
… combine with whole-body body motion planning

Boston Dynamics: https://www.youtube.com/watch?v=-e1_QhJ1EhQ

https://www.youtube.com/watch?v=-e1_QhJ1EhQ

Recap: Transformation Basics
• Cartesian Coordinates:

One way to represent the position in 3D space

• Homogeneous Coordinates
3D point represented by a 4D vector

Recap: Transformation Basics
• Rigid body transformation in 3D can be described by a

translation followed by a rotation

Translation
• Translation of a rigid body from A to B can be described by

a 3D vector

Recap: Transformation Basics
• Rigid body transformation in 3D can described by a

translation followed by a rotation

Rotation
• 3x3 matrix to represent the rotation of a rigid body in

3D space
• Two important properties:
– 𝑅!" = 𝑅# à 𝑅 ∗ 𝑅# = 𝐼
– det 𝑅 = 1

Recap: Transformation Basics
Euler Angles
• One way to represent a general rotation of a rigid body

• The rotation is described by a chain of rotations around
3 different axes

• We can obtain a general rotation matrix by using matrix
multiplication

Recap: Transformation Basics
Example:
Using roll-pitch-yaw angles and matrix multiplication

Recap: Transformation Basics
Homogeneous Transformation Matrix
• Encodes the transformation (i.e., rotation and translation)

of a rigid body in 4x4 matrix
• Element of SE(3)

• The inverse can be calculated as:

Kinematics
• The humanoid body is relatively complex, it has more than

20 degrees of freedom

Neck: yaw, pitch

Elbow: pitch

Shoulder: roll, pitch

Hip: roll, pitch, yaw

Knee: pitch

Ankle: roll, pitch

x

y

z

roll

pitchyaw

NimbRo-OP, AIS, Uni Bonn

Kinematic Chains
§ Complex bodies are organized in kinematic chains of rigid

links that are connected by joints

Leg chain

hip

knee

ankle
𝑞"

𝑞$

𝑞%

joint angle

rigid
link

Arm chain

shoulder

elbow

wrist

Types of Kinematic Chain
§ Open kinematic chain (e.g., robotic arm)
§ Closed kinematic chain (e.g., delta robot)
§ Semi-closed kinematic chain (e.g., bimanual manipulation)

Courtesy: FanucCourtesy: Universal Robots Courtesy: Clover Lab

Kinematic Parameters
• Rigid body transformations can be described by

translation followed by a rotation
• Each link of the kinematic chain is transformed

relative to its parent link
• Each joint can be explained by:
– Joint parameter (i.e., rotation)
– Relative transformation to other joints

𝑃" = 𝑐𝑜𝑠𝑞" −𝑠𝑖𝑛𝑞"
𝑠𝑖𝑛𝑞" 𝑐𝑜𝑠𝑞"

𝑃& + 0
−𝑙"

𝑃" =?

𝑞"
𝑙"

0

1

𝑃& =
𝑃'&

𝑝(&

Kinematics
• Given the joint angles, what is the end-effector (EE) pose?
• Given an EE pose what are possible joint angles to reach it?

• Forward Kinematics:
• Inverse Kinematics:

𝑋 = 𝑓 𝑄
𝑄 = 𝑓!" 𝑋 𝑞" 𝑄 = 𝑞", 𝑞$

𝑞$

𝑋 = 𝑥, 𝑦
End-effector:

Joint angles:

Forward Kinematics
• Homogeneous coordinates to represent the translation

and the rotation as a matrix multiplication

𝑃! =
𝑐𝑜𝑠𝑞! −𝑠𝑖𝑛𝑞!
𝑠𝑖𝑛𝑞! 𝑐𝑜𝑠𝑞!

𝑃" + 0
−𝑙!

𝑃" ⇒
𝑃#"

𝑃$"

1
𝑃! ⇒

𝑃#!

𝑃$!

1

𝑃#!

𝑃$!

1
=

𝑐𝑜𝑠𝑞! −𝑠𝑖𝑛𝑞! 0
𝑠𝑖𝑛𝑞! 𝑐𝑜𝑠𝑞! 0
0 0 1

1 0 0
0 1 −𝑙!
0 0 1

𝑃#"

𝑃$"

1

𝑞"
𝑙"

0

1

Forward Kinematics
• Combine translation and rotation into one transformation

matrix and use a symbolic notation

𝑃#!

𝑃$!

1
=

𝑐𝑜𝑠𝑞! −𝑠𝑖𝑛𝑞! 0
𝑠𝑖𝑛𝑞! 𝑐𝑜𝑠𝑞! 0
0 0 1

1 0 0
0 1 −𝑙!
0 0 1

𝑃#"

𝑃$"

1

𝑃#!

𝑃$!

1
=

𝑐𝑜𝑠𝑞! −𝑠𝑖𝑛𝑞! 𝑙!𝑠𝑖𝑛𝑞!
𝑠𝑖𝑛𝑞! 𝑐𝑜𝑠𝑞! −𝑙!𝑐𝑜𝑠𝑞!
0 0 1

𝑃#"

𝑃$"

1

𝑷𝟏 = 𝑻𝟎𝟏 𝒒𝟏, 𝒍𝟏 ⋅ 𝑷𝟎

𝑃" = 𝑅(𝑞") ⋅ t(𝑙") ⋅ 𝑃&

From

To

Forward Kinematics
• Now, transformations can be easily concatenated
• The order of the transformations follows the hierarchy

along the kinematic chain

𝑞"

𝑞$

𝑙"

𝑙$

𝑃% =?

𝑃$ = 𝑇"$ 𝑞$, 𝑙$ ⋅ 𝑇&" 𝑞", 𝑙" ⋅ 𝑃&

𝑃$ = 𝑇&$ ⋅ 𝑃&
𝑃" =

𝑃#"

𝑃$"

Inverse Kinematics (IK)
• IK computes the joint angle values so that the end-

effector reaches a desired pose
• IK is challenging and cannot be as easily computed as FK
• There might exist several possible solutions, or there may

be no solution at all

Inverse Kinematics (IK)
• Many different approaches to solving IK problems exist
• Analytical methods: closed-form solution
• Numerical methods: iteratively calculate a sequence of

configurations that approach target pose

Analytical IK Methods
• Closed-form solution (using trigonometry, geometry)
• Computes all IK solutions, determines whether or not a

solution exists
• Once the equations are derived, solutions are very fast to

compute
• No need to define solution parameters or initial guesses
• Often difficult to define, must be derived
• Individual equations for robots with different kinematic

structures

Numerical IK Methods
• Given a start configuration, iteratively calculate a

sequence of configurations to reach end-effector pose
• Use the Jacobian and try to converge to a solution
• Usually much slower but also more general

Existing Inverse Kinematics Solvers
• Analytical solvers:
– IKFast: https://github.com/rdiankov/openrave

– EAIK: https://ostermd.github.io/EAIK/

• Numerical methods:
– Kinematics and Dynamics Library (KDL)

 http://wiki.ros.org/kdl

– Robotics Toolbox
https://petercorke.github.io/robotics-toolbox- python/IK/ik.html

https://github.com/rdiankov/openrave
https://ostermd.github.io/EAIK/
http://wiki.ros.org/kdl
https://petercorke.github.io/robotics-toolbox-python/IK/ik.html

Inverse Kinematics: Example
• Consider a simple 2D robot arm with two 1-DOF joints
• Given a desired end-effector pose
• Compute joint angles and

Inverse Kinematics: Example
• If we increased by a small amount, what would happen

to ?

?

Inverse Kinematics: Example
• If we increased by a small amount, what would happen

to ?

?

Numerical Approach Using the Jacobian
• Jacobian matrix for this simple example would look like:

• Defines how each component of changes w.r.t. joint angle
changes

• For any given vector of joint values, we can compute the
components of the Jacobian

Numerical Approach Using the Jacobian
• Usually, the Jacobian will be an 6xN matrix where N is the

number of joints
• Jacobian can be computed based on the equations of FK

Numerical Approach Using the Jacobian
• Given a desired incremental change in the end-effector

configuration, we can compute the corresponding
incremental change of :

• As cannot be inverted in the general case, it is replaced
by the pseudoinverse or by the transpose in practice

J∆q = ∆e

∆q = J−1∆e

Numerical Approach Using the Jacobian
• Forward kinematics is a nonlinear function
• Thus, we have an approximation that is only valid near the

current configuration
• Until the end-effector is close to the desired pose, repeat:
– Compute the Jacobian
– Take a small step towards the goal

End-Effector Goal and Step Size
• Let represent the current end-effector pose and

represent its desired goal pose
• Choose a value for that will move closer to ,

theoretically:

• But non-linearity prevents the end-effector to reach the
goal exactly

• Thus, to avoid oscillation, take a smaller step:

Basic Jacobian IK Algorithm

while ((-) > Threshold):
 Compute for the current configuration
 Compute
 // choose a step to take

 // compute required change in joints
 // apply change to joints

 Compute resulting // by FK

Denavit-Hartenberg (DH) Convention
• Goal: Reduction of joint and link describing parameters
• Approach:
–Systematic description of translation and rotation

between neighbor links
– Only 4 parameters

Denavit-Hartenberg Parameters
Describe joints via 4 DH-parameters:
• 𝑎+:	link length, or distance between two consecutive

 z-axes, measured along the 𝑥+!"-axis
• 𝛼+:	angle between the z-axes of two consecutive joints

 measured about the 𝑥+!"-axis
• 𝑑+:	link offset, distance between two consecutive x-axes

 measured along 𝑧+-axes
• 𝜃+:	angle between two consecutive 𝑥-axes, measured about

 the 𝑧+-axis

• 𝛼+ and 𝑎+ describe the joint
• 𝑑+ and 𝜃+ describe the connection to the next joint

Denavit-Hartenberg Parameters
Joint i-1 Joint i

Link i-1

𝑎+
𝜃+𝑑+

𝛼+

Joint i+1

Link i

…

Denavit-Hartenberg Parameters
• Simplify computation of forward and inverse kinematics by

using homogeneous transformations to describe each
joint’s effect to the next one

𝑇,!", =

cos 𝜃+ 	 − sin 𝜃+ ∗ cos 𝛼+ 	 sin 𝜃+ ∗ 𝑠𝑖𝑛 𝛼+ 	 𝑎+ ∗ cos(𝜃+)
sin 𝜃+ 	 cos 𝜃+ ∗ cos 𝛼+ 	 −cos 𝜃+ ∗ 𝑠𝑖𝑛 𝛼+ 	 𝑎+ ∗ 𝑠𝑖𝑛(𝜃+)

0	 𝑠𝑖𝑛 𝛼+ 	 𝑐𝑜𝑠 𝛼+ 	 𝑑+
0	 0	 0	 1

	

J. Denavit and R. S. Hartenberg, A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices, 1955

DH Example: UR5 Arm

https://www.universal-robots.com/articles/ur/application-installation/dh-parameters-for-calculations-of-kinematics-and-dynamics/

trapped%20in%20local%20minima

Capability Maps
• Measures the kinematic capabilities of a robot,

representing its workspace under certain quality measures
• Acceleration of online motion planning, due to

pre-calculation of the capability measures
• Common measures:
– Reachability
– Manipulability
– Robot base placeability (inverse reachability)

• Capability maps always consist of a reachability map

Reachability Map (RM)
• Constructed by systematic sampling joint configurations

of a kinematic chain
• Example: Chain of joints between the right foot and the

gripper link

Reachability Map (RM)
• FK to determine the corresponding voxel containing the

end-effector pose

Reachability Map (RM)
• Configurations are added to the RM if they are statically

stable and self-collision free
• Result: Representation of reachability, voxels contain

configurations and corresponding quality measures
• Generating the RM is time-consuming, but needs to be

done only once offline

Manipulability Measure
• Penalize configurations with limited maneuverability
• Singular configurations: Certain EE movements are not

possible, i.e., small desired changes in EE poses lead to
large joint angle changes

• Consider: Distance to singular configurations and joint
limits, self-distance, ...

red=low
green=high

Inversion of the RM
• Invert the precomputed reachable workspace: inverse

reachability map (IRM)
• Invert the FK transform for each configuration to get the

pose of the robot’s base (e.g., foot) w.r.t. the EE frame
• Determine the voxel in the IRM containing the base pose
• Store configurations and manipulability measures from the

RM in the corresponding IRM voxels

Inverse Reachability Map (IRM)
• The IRM represents the set of potential base poses

relative to the EE frame
• Allows for selecting an optimal base pose for a given

grasping target
• Can be pre-computed

Cross section through
the IRM showing
potential feet locations

red=low
green=high

Determining the Optimal Stance Pose
Given a Grasp Pose
• Given a desired 6D end-effector pose with transform
• How to determine the optimal stance pose?

Determining the Optimal Stance Pose
Given a Grasp Pose
• Transform the IRM and determine valid configurations of

the feet on the ground
• Align the origin of the IRM with the grasp frame to

get the transformed IRM
• Intersect with the floor plane F:

• Remove unfeasible configurations from
to get

Determining the Optimal Stance Pose:
Example

desired
grasp pose

optimal stance pose

Select the optimal stance pose
from the voxel with the highest manipulability measure

red=low
green=high

Summary (1)
• Forward kinematics compute the end-effector pose given

joint angles along the chain
• Inverse kinematics computes the joint angles so that the

end-effector reaches a desired goal pose
• Several approaches for IK exist (analytical/numerical)
• Basic Jacobian IK technique iteratively adapts the joint

angles to reach the end-effector goal pose
• Denavid-Hartenberg parameters reduce the joint and link

describing parameters

Summary (2)
• Capability maps represent “how well” the robot can interact

with the world
• Reachability maps represent reachable end-effector poses

using FK
• Inverse RMs used to determine the optimal base pose for a

desired end-effector pose
• Both computed offline only once

Literature
• Introduction to Inverse Kinematics with Jacobian

Transpose, Pseudoinverse and Damped Least methods
S.R. Buss, University of California, 2009

• Introduction to Robotics: Mechanics and Control
John J. Craig, Pearson Prentice Hall, 2005

• Stance Selection for Humanoid Grasping Tasks by Inverse
Reachability Maps
F. Burget and M. Bennewitz,
Proc. of the IEEE International Conference on Robotics & Automation
(ICRA), 2015

