A

Motion Planning for Manipulation

Maren Bennewitz, Rohit Menon
Humanoid Robots Lab, University of Bonn

Humanoid Motion Planning

Different approaches based on the task

* Motion planning and trajectory generation for
manipulation (upper limbs)

* Navigation and gait planning for locomotion (lower limbs)
* Whole-body controller ensures balancing during both tasks

Goal of This Chapter

* Introduction to basic concepts: path, trajectory,
configuration space, task space

* Understanding of important components: configuration
space obstacles, collision detection, sampling-based
planning

°* Next lecture (Tue June 3!): trajectory generation

Motivation

HOME LAB

Motivation

* How to reach a target object such
that the arm can manipulate it?

* How to reach such that the arm
motion is collision-free in a
cluttered environment?

* How to reach such that the arm
motion is smooth smooth?

* How to reach such that the path
obeys temporal constraints?

Motion Phases for Grasping Tasks

Initial
Pose

Place &
Release

Post-Grasp Gripper
Pose Close

Steps in Manipulation Motion Planning

* Define start and goal end-effector poses

* Define intermediate poses if needed

Add constraints if necessary
* Generate a collision-free arm motion path

* Parameterize a trajectory from the path

- -)
MOt'O“ Plannlng Environment

Obstacle |,
Information

—

/ Configuration \
[91,92,..]

Initial Pose p; | (‘ Initial 4 /\1_"—\

int
” it 4y Collision-Free Collision-Free
Ki%nevnewgst?cs _Path Planner Collision Path ,| Trajectory Trajectory .
Goal Pose p Solver n Joint Space Checker 11141, 41,42, 46] Generator | 1q, (to), 41 (t1), 42 (t2),
- 46 (t6)]
N N -, g

\) Goal _ J \—
Joint q¢ ‘ _;_)

Constraints Collision Information /

about [q4, Q2,...]

Motion Planning

Environment

<
<

/ Configuration \
[91,92,..]
— S -

Initial
Joint

Initial Pose p;

Collision-Free Collision-Free
Path Planner Collision Path | Trajectory Trajectory
in Joint Space Checker

» »

Goal Pose pg (491,91, 92,... 96] Generator |1, (to), 41 (t1), g2 (£2),

. \ ‘ & ’qG(tG)]
Joint (1

Constraints Collision Information
about [q4, 9>,] /

- -)
MOt'O“ Plannlng Environment

Obstacle |,
Information

—

/ Configuration \
[91,92,..]

Initial Pose p; | (‘ Initial 4 /\1_"_\

int
” 2ot 4 Collision-Free Collision-Free
Ki%nevnewgst?cs _Path Planner Collision Path ,| Trajectory Trajectory
Goal Pose p Solver 0 Sl EpEEs Checker 1 11g;, 41,42, q6] Generator | 1q, (to), 41 (t1), 42 (t2),
: 4 ()]
> > -, g

\) Goal U J \—
Joint q¢ ‘ _;_)

Constraints Collision Information /

about [q4, Q2,...]

- -)
MOt'O“ Plannlng Environment

Obstacle |,
Information

—

/ Configuration \
[91,92,..]

Initial Pose p;) nitial 4 /\3_"_\)

int
” 2ot 4 Collision-Free Collision-Free
Ki%nevneq;st?cs _Path Planner Collision Path .| Trajectory Trajectory
Goal Pose p Solver n Joint Space Checker 11141, 41,42, 46] Generator | g, (¢4), 41 (t1), 42 (),
: 4 ()]
N N -, g

\) Goal _ J -
Joint q¢ ‘ _;_)

Constraints Collision Information /

about [q4, Q2,...]

Concepts Needed for Motion Planning
* What is a path?

* What is a trajectory?

What different kinds of robot spaces exist?

How to plan a path?

Ho to perform collision checking?

°* How to generate a trajectory?

Path

* Defines geometric sequence of positions
* Lacks timing and dynamic information
* Can be

—Point to point

—Multi-point G

P1

P2

P3

What is a Trajectory?

* Adds time parameterization to path
—Initial and final times
—Time optimality

* May specify velocity, acceleration, jerk, or torque along path

P3
G G

P1

N

t0 tf to t1 £2 t3 tf

v

Robot Spaces

* Robots operate in multi-dimensional spaces

—Configuration space (joint space): Space formed by
the combination of robot joint angles

—Task space (Cartesian space): Space described by end-
effector position (R3) and orientation (SO(3)), both (SE(3))

—Workspace: Actual physical region that the end-effector
can reach (R? for mobile robot base, R? for arms)

* Real-world tasks are specified in task spaces
* However, robots are controlled in configuration space
* Obstacle regions are typically given workspace

Task Space

° More intuitive than joint space for manipulation planning
* Controls end-effector pose (position, orientation)
* Enables direct control of robot's environmental interaction

* Crucial for grasping, tool use, and human-robot
collaboration

Task Space Motion: Pre-Grasp to Grasp

* End-effector must linearly approach the object

* Interpolate in task space from p, to p; keeping the gripper
orientation fixed

* Compute inverse kinematics
91 = IK(P1), q2 = IK(P2), -, 96 = [K(pg)]

Task Space
Motion

[

Pre-Grasp Pose Grasp Pose

Configuration Space (C-Space)
* Represents the space of the robot’s joint angle
configurations

* For a robot with n joints, its configuration space is an
n-dimensional space

* High-dimensional, capturing all possible configurations
* Essential for collision checking and motion planning

Example: Initial to Pre-Grasp

e Start and goal poses (p,,p;) defined in task space
* Compute inverse kinematics q; = IK(p1),q¢ = IK(p¢)
°* Then, compute a path from g, to g, in joint space

* In case of obstacles, generate a collision-free path
91,95, ...,q¢] INn joint space

C-Space
Motion

I

C-Space of a Two-Joint Planar Arm

* Consider a 2-joint planar arm with no joint limits

* Each joint angle 6; corresponds to a point on circle S?

* C-Space is S'xS' = T“corresponding to a 2D torus

* Configuration g in C-space consists of 2 angles g = (64, 6,)

End effector

Workspace of a Two-Joint Planar Arm

* For the 2-joint planar arm, the workspace is a 2D torus,
i.e., a subset of R?

* All points in the 2D torus are reachable with two different
configurations: elbow-up or elbow-down

End effector ‘

C-Space Obstacles and Free Space

* Typically, complete description of the robot’s geometry and
of its workspace W is provided
°* Let 0 c W represent the workspace obstacle region

°* Let A(q) c W denote set of points occupied by the robot
when in configuration g € C

* C-space obstacle: C,,, ={qg € C|A(q) n 0 + 0}
* Free C-space: (froe = C\Cpps

Workspace Obstacles to C-Space Obstacles

* Consider circular mobile robot with single
polygonal obstacle as shown

* "Slide” the robot around the obstacle to find
the constraints the obstacle places on the
configuration of the robot

* Resulting obstacle in C-space

* Motion planning for circular robot in top figure

Is equivalent to motion planning for point in
C-space

)

N

]

.

Workspace and C-Spaces for Different
Mobile Robots

Workspace @ :

[] [] [] \
C-space r

What about Transforming Workspace
Obstacles to C-Space for n-Joint Arms?

* For circular mobile robots, converting workspace obstacles
to C-space is relatively trivial due to
—Symmetry of the robot
—Workspace and C-space being low dimensional R?
* Robot arms have workspace in R? and task space in SE(3)
* C-space is T" with n number of joints

* Hence, conversion of workspace obstacles to C-space is
computationally infeasible

Geometric Path Planning Problem

Given

* Robot’s configuration space C
* Robot’s workspace W

* Obstacle region 0 c W

* Initial configuration q; € Cspee

* Goal configuration qg € Crpe,

Goal
For the query (q;,qg), compute a collision-free path
(91,91, 92,..,9¢] In the configuration space

Motion Planning Complexity

* Not easy to compute C,,s and Crpe,
* Exponential dependence on C-space dimensionality
* Two approaches: Combinatorial and Sampling

* Combinatorial algorithms

—Complete, i.e., either find a solution or will correctly
report that no solution exists

—Exact, i.e., find paths through C-space w/o resorting to
approximations

—However, NP-hard

Motion Planning Complexity

e Sampling-based approach

—Weaker guarantee: Will find a solution eventually if one
exists, but no guarantee on failure report in finite time in
case none exists

—Approximate: Uses approximation of C-space for
collision checking

Sampling-Based Motion Planning

* Avoid explicit construction of the obstacle configuration

space C,p

* Instead, perform search that probes C-space with sampling

* Collision checking without exact geometric models

Configuration in C-Space q,4n4

—

Environment

)

Sampllnlgéian?ﬁg Motion Collision | _Geometric Obstacle |,
(C-Space Sampling) Checker Model Information
—

—

Collision Information About g, 4n4

Geometric Models

* Representations for known objects, i.e., robot and known
obstacles
—Primitives (rectangle, cylinder, box, sphere)
—Meshes

* Representations for unknown objects, i.e., sensed obstacles
—Point clouds
—QOccupancy maps

* See Chapter 3 for more details on 3D world representations

Collision Avoidance

WBC: Self collision avoidance

Collision Detection

For a particular configuration q € T", check if q € Cryee
or q € Cobs

Collision detection can be a continuous or Boolean function

Boolean function ¢:C - {TRUE,FALSE}
q € C,ps = ¢(q) = TRUE,else FALSE

Boolean functions typically used in sampling-based
planners for accepting or rejecting a g sampled from T"

Distance function d: C - [0,)

Distance function used for optimization-based planning
where d is used to assign a cost for g

Two-Phase Collision Detection

* For n-joint robots like arms collision detection is a two-
phase process

° Broad Phase:

—Avoid expensive computation for links far away from
each other

—Place simple bounding boxes around each links

—Perform simple overlap test to determine whether costly
checking is needed

Two-Phase Collision Detection

* Narrow Phase:

—Further process individual pairs of bodies that overlap in
broad-phase check

—Perform more expensive checking for collision

Sampling-Based Motion Planning

Different types of sampling-based planners

* Multi-query (e.g., probabilistic roadmap approach)
—Constructs a "roadmap” once to map the Cs,e,
—Multiple queries in same environment using the roadmap

* Single-query (e.g., RRTs)
—Build tree data structures on the fly for a given query

—Explore part of C-space to solve specific query as fast as
possible

Rapidly Exploring Random Trees (RRTs)

* Explore the configuration space by expanding incrementally
from an initial configuration

* Explored space corresponds to a tree rooted at the initial
configuration

* Basic principle: Sample configuration and compute local

connection to nearest neighbor
Goal Goal

RRTs: General Algorithm

Given: Configuration space C and initial configuration qg

G.init(qo)

repeat

drang — RANDOM_CONFIG(C) ¢ f:f)”;g'geur;':f;nm
Qnear < NEAREST(Ga q'ra'n,d)

G. add—edge(Qnear y rand)

until condition

qo drand

tree constructed so far

RRTs: General Algorithm

Given: Configuration space C and initial configuration qg

G.init(qo)
repeat
Grand — RANDOM_CONFIG(C) Find closest vertex in G

Qnear < NEAREST(Ga QTand) h using a distance

G'add—edge(Qneam Qm,nd) function
until condition p: CxC—|0,00)
Qnear
@)

qo drand

RRTs: General Algorithm

Given: Configuration space C and initial configuration qg

G.init(qo)

repeat

@rand — RANDOM_CONFIG(C)
Anear < NEAREST(Ga q'ra'n,d)

G. add_edge (q nears 4rand) h SSO ir:;e; t| g:b;eaa{ |;A|”at : I‘?glb‘nd

until condition

Qnear

q0 drand

Extension of the Tree: Constraints

« Need to consider obstacles: Check local connection for
collisions and add edge only if path collision-free

« Use fixed incremental step size so that the likelihood of a
collision-free path is increased

- Terminate when @y is close to the desired g oqi

Bias Towards the Goal

- During tree expansion, pick the goal instead of a random
node with some probability (5-10%)

 Why not picking the goal at each iteration?

« Avoiding running into local minima (due to obstacles or
other constraints) instead of exploring the space

Bidirectional RRTs

* High-dimensional, complex motion planning problems
require more effective methods: bidirectional search

« Grow two RRTs, one from gy and one from qg

« In every other step, try to extend each tree
towards @, Of the other tree

RRT-Connect: Basic Concept

Grow two trees: from start and end node (start and goal
configurations of the robot)

Pick a random configuration: Qrand
Find the nearest node in one tree: Qnear

Extend the tree from the nearest node by taking a step
towards the random node to get Gnew

Extend the other tree towards that ¢,ew from nearest node
in the tree

Return the solution path when the distance between @ ew
and the nearest node in the second tree is close enough

Extend Function

Returns

 Trapped: Not possible to extend the tree due to collisions
or constraints

- Extended: Performed a step from @pneqr towards Grand,
generated Gnew

- Reached: Trees connected, path found

RRT-Connect

RRT_CONNECT (qmit, ngal) {
T,.init(q;,); Tpinit(q,.,);
fork= 1to K do K=max number of iterations
q,.,0 = RANDOM CONFIG();
ciet tree has been 1T NOL (EXTEND(T, ¢,,,,) = Trapped) then
extended, try to it (EXTEND(T,, q,.,) = Reached) then
extend second tree
Return PATH(T T b); Success: trees connected
SWAP(T,, Tp);
Return Failure; Max number of iterations reached

h

[Kuffner&Lavalle, ICRA 2000]

RRTs - Properties (1)

Good balance between greedy search and exploration
Effective for high-dimensional configuration spaces

Produce non-optimal paths: solutions are typically jagged
and may be overly long

Post-processing such as smoothing is necessary
Generated paths are not repeatable and unpredictable
Rely on a distance metric (e.qg., Euclidean)

RRTs - Properties (2)
* Probability of finding a solution if one exists approaches 1
(probabilistic completeness)

- Unknown rate of convergence

« When there is no solution (path is blocked due to obstacles
or other constraints), the planner may run forever

 To avoid endless runtime, the search is stopped after a
certain number of iterations

Considering Constraints for Humanoid
Motion Planning

« When randomly sampling configurations, most of them wiill
not be valid since they cause the robot to lose its balance

« Use a set of predetermined statically stable double support
configurations from which to sample @rqnd

- In the extend function: Check gnew for joint limits, self-
collision, collision with obstacles, and whether it is
statically stable

RRT-Connect: Considering Constraints

« Check for constraint violation in configuration space
« Smooth path after a solution is found

® Grand from DS-Database

-
——’
-

-== -
-
-
e ————
-

configurations with
violated constraints

found solutior
smoothed pa

Qgoal
° g

path
h

Path Execution: Pick and Place

Past Execution: Grabbing Into a Cabinet

Goal Configuration

« How to actually determine the robot’s goal configuration for
a given manipulation task?

« Use inverse reachability maps (see previous chapter)

all valid goal configurations
for the same desired end effector pose

Literature Motion Planning

* Principles of Robot Motion: Theory, Algorithms, and Implementations,
Choset, Lynch, Hutchinson, Kantor, and Burgard, MIT press, 2005

* Planning Algorithms, LaValle, Cambridge University Press, 2006

* Motion planning. In Springer Handbook of Robotics ,
Kavraki and LaValle (pp. 139-162), Springer International Publishing, 2016

* Curobo: Parallelized Collision-Free Robot Motion Generation,
Sundaralingam, Hari, Fishman, Garrett, Van Wyk, Blukis, Millane, Oleynikova, Handa,
Ramos, and Ratliff, IEEE/RAS Int. Conf. on Robotics and Automation (ICRA), 2023

* HPP: A New Software for Constrained Motion Planning,
Mirabel, Tonneau, Fernbach, Seppala, Campana, Mansard, and Lamiraux,
IEEE/ RS] Int. Conf. on Int. Robots and Systems (IROS), 2016

* RRT-Connect: An Efficient Approach to Single-Query Path Planning
Kuffner and LaValle , IEEE International Conference on Robotics & Automation (ICRA), 2000

* Whole-Body Motion Planning for Manipulation of Articulated Objects
Burget, Hornung, and Bennewitz,
IEEE International Conference on Robotics & Automation (ICRA), 2013

